scholarly journals Change in Motor Plan, Without a Change in the Spatial Locus of Attention, Modulates Activity in Posterior Parietal Cortex

1998 ◽  
Vol 79 (5) ◽  
pp. 2814-2819 ◽  
Author(s):  
Lawrence H. Snyder ◽  
Aaron P. Batista ◽  
Richard A. Andersen

Snyder, Lawrence H., Aaron P. Batista, and Richard A. Andersen. Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. J. Neurophysiol. 79: 2814–2819, 1998. The lateral intraparietal area (LIP) of macaque monkey, and a parietal reach region (PRR) medial and posterior to LIP, code the intention to make visually guided eye and arm movements, respectively. We studied the effect of changing the motor plan, without changing the locus of attention, on single neurons in these two areas. A central target was fixated while one or two sequential flashes occurred in the periphery. The first appeared either within the response field of the neuron being recorded or else on the opposite side of the fixation point. Animals planned a saccade (red flash) or reach (green flash) to the flash location. In some trials, a second flash 750 ms later could change the motor plan but never shifted attention: second flashes always occurred at the same location as the preceding first flash. Responses in LIP were larger when a saccade was instructed ( n = 20 cells), whereas responses in PRR were larger when a reach was instructed ( n = 17). This motor preference was observed for both first flashes and second flashes. In addition, the response to a second flash depended on whether it affirmed or countermanded the first flash; second flash responses were diminished only in the former case. Control experiments indicated that this differential effect was not due to stimulus novelty. These findings support a role for posterior parietal cortex in coding specific motor intention and are consistent with a possible role in the nonspatial shifting of motor intention.

2003 ◽  
Vol 90 (4) ◽  
pp. 2460-2464 ◽  
Author(s):  
A. R. Dickinson ◽  
J. L. Calton ◽  
L. H. Snyder

We present evidence that neurons in the lateral intraparietal area (LIP) of monkey posterior parietal cortex (PPC) are activated by the instruction to make an eye movement, even in the complete absence of a spatial target. This study employed a visually guided motor task that dissociated the type of movement to make (saccade or reach) from the location where the movement was to be made. Using this task, animals were instructed to prepare a specific type of movement prior to knowing the spatial location of the movement target. We found that 25% of the LIP neurons recorded in two animals were activated significantly more by the instruction to prepare a saccade than by the instruction to prepare a reach. This finding indicates that LIP is involved in more than merely spatial attention and provides further evidence for nonspatial effector-specific signal processing in the dorsal stream.


2013 ◽  
Vol 109 (12) ◽  
pp. 2897-2908 ◽  
Author(s):  
Christina S. Konen ◽  
Ryan E. B. Mruczek ◽  
Jessica L. Montoya ◽  
Sabine Kastner

The act of reaching to grasp an object requires the coordination between transporting the arm and shaping the hand. Neurophysiological, neuroimaging, neuroanatomic, and neuropsychological studies in macaque monkeys and humans suggest that the neural networks underlying grasping and reaching acts are at least partially separable within the posterior parietal cortex (PPC). To better understand how these neural networks have evolved in primates, we characterized the relationship between grasping- and reaching-related responses and topographically organized areas of the human intraparietal sulcus (IPS) using functional MRI. Grasping-specific activation was localized to the left anterior IPS, partially overlapping with the most anterior topographic regions and extending into the postcentral sulcus. Reaching-specific activation was localized to the left precuneus and superior parietal lobule, partially overlapping with the medial aspects of the more posterior topographic regions. Although the majority of activity within the topographic regions of the IPS was nonspecific with respect to movement type, we found evidence for a functional gradient of specificity for reaching and grasping movements spanning posterior-medial to anterior-lateral PPC. In contrast to the macaque monkey, grasp- and reach-specific activations were largely located outside of the human IPS.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Michael Krumin ◽  
Julie J Lee ◽  
Kenneth D Harris ◽  
Matteo Carandini

Posterior parietal cortex (PPC) has been implicated in navigation, in the control of movement, and in visually-guided decisions. To relate these views, we measured activity in PPC while mice performed a virtual navigation task driven by visual decisions. PPC neurons were selective for specific combinations of the animal's spatial position and heading angle. This selectivity closely predicted both the activity of individual PPC neurons, and the arrangement of their collective firing patterns in choice-selective sequences. These sequences reflected PPC encoding of the animal’s navigation trajectory. Using decision as a predictor instead of heading yielded worse fits, and using it in addition to heading only slightly improved the fits. Alternative models based on visual or motor variables were inferior. We conclude that when mice use vision to choose their trajectories, a large fraction of parietal cortex activity can be predicted from simple attributes such as spatial position and heading.


2020 ◽  
Vol 31 (1) ◽  
pp. 267-280
Author(s):  
Rossella Breveglieri ◽  
Annalisa Bosco ◽  
Sara Borgomaneri ◽  
Alessia Tessari ◽  
Claudio Galletti ◽  
...  

Abstract Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A–hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.


2005 ◽  
Vol 94 (2) ◽  
pp. 1372-1384 ◽  
Author(s):  
Denis Schluppeck ◽  
Paul Glimcher ◽  
David J. Heeger

Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contra-lateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC.


2007 ◽  
Vol 98 (6) ◽  
pp. 3708-3730 ◽  
Author(s):  
Esther P. Gardner ◽  
K. Srinivasa Babu ◽  
Soumya Ghosh ◽  
Adam Sherwood ◽  
Jessie Chen

Neurons in posterior parietal cortex (PPC) may serve both proprioceptive and exteroceptive functions during prehension, signaling hand actions and object properties. To assess these roles, we used digital video recordings to analyze responses of 83 hand-manipulation neurons in area 5 as monkeys grasped and lifted objects that differed in shape (round and rectangular), size (large and small spheres), and location (identical rectangular blocks placed lateral and medial to the shoulder). The task contained seven stages—approach, contact, grasp, lift, hold, lower, relax—plus a pretrial interval. The four test objects evoked similar spike trains and mean rate profiles that rose significantly above baseline from approach through lift, with peak activity at contact. Although representation by the spike train of specific hand actions was stronger than distinctions between grasped objects, 34% of these neurons showed statistically significant effects of object properties or hand postures on firing rates. Somatosensory input from the hand played an important role as firing rates diverged most prominently on contact as grasp was secured. The small sphere—grasped with the most flexed hand posture—evoked the highest firing rates in 43% of the population. Twenty-one percent distinguished spheres that differed in size and weight, and 14% discriminated spheres from rectangular blocks. Location in the workspace modulated response amplitude as objects placed across the midline evoked higher firing rates than positions lateral to the shoulder. We conclude that area 5 neurons, like those in area AIP, integrate object features, hand actions, and grasp postures during prehension.


2007 ◽  
Vol 97 (3) ◽  
pp. 2339-2354 ◽  
Author(s):  
Kim Lajoie ◽  
Trevor Drew

We developed a novel locomotor task in which cats step over obstacles that move at a different speed from that of the treadmill on which the cat is walking: we refer to this as a visual dissociation locomotion task. Slowing the speed of the obstacle with respect to that of the treadmill sometimes led to a major change in strategy so that cats made two steps with the hindlimbs before stepping over the obstacle (double step strategy) instead of the single step (standard strategy) observed when the obstacle was at the same speed as the treadmill. In addition, in the step preceding the step over the obstacle, the paws were placed significantly closer to the obstacle in the visual dissociation task than when the treadmill and the obstacle were at the same speed. After unilateral lesion of area 5 of the posterior parietal cortex (PPC), the cats frequently hit the obstacle as they stepped over it, especially in the visual dissociation task. This locomotor deficit was linked to significant differences in the location in which the forelimbs were placed in the step preceding that over the obstacle compared with the prelesion control. Cats also frequently hit the obstacle with their hindlimbs even when the forelimbs negotiated the obstacle successfully; this suggests an important role for the posterior parietal cortex in the coordination of the forelimbs and hindlimbs. Together, these results suggest an important contribution of the PPC to the planning of visually guided gait modifications.


2010 ◽  
Vol 103 (2) ◽  
pp. 986-1006 ◽  
Author(s):  
Jacques-Étienne Andujar ◽  
Kim Lajoie ◽  
Trevor Drew

We tested the hypothesis that area 5 of the posterior parietal cortex (PPC) contributes to the planning of visually guided gait modifications. We recorded 121 neurons from the PPC of two cats during a task in which cats needed to process visual input to step over obstacles attached to a moving treadmill belt. During unobstructed locomotion, 64/121 (53%) of cells showed rhythmic activity. During steps over the obstacles, 102/121 (84%) of cells showed a significant change of their activity. Of these, 46/102 were unmodulated during the control task. We divided the 102 task-related cells into two groups on the basis of their discharge when the limb contralateral to the recording site was the first to pass over the obstacle. One group (41/102) was characterized by a brief, phasic discharge as the lead forelimb passed over the obstacle (Step-related cells). These cells were recorded primarily from area 5a. The other group (61/102) showed a progressive increase in activity prior to the onset of the swing phase in the modified limb and frequently diverged from control at least one step cycle before the gait modification (Step-advanced cells). Most of these cells were recorded in area 5b. In both groups, some cells maintained a fixed relationship to the activity of the contralateral forelimb regardless of which limb was the first to pass over the obstacle (limb-specific cells), whereas others changed their phase of activity so that they were always related to activity of the first limb to pass over the obstacle, either contralateral or ipsilateral (limb-independent cells). Limb-independent cells were more common among the Step-advanced cell population. We suggest that both populations of cells contribute to the gait modification and that the discharge characteristics of the Step-advanced cells are compatible with a contribution to the planning of the gait modification.


Sign in / Sign up

Export Citation Format

Share Document