Voltage Dependence of the Glycine Receptor–Channel Kinetics in the Zebrafish Hindbrain

1999 ◽  
Vol 82 (5) ◽  
pp. 2120-2129 ◽  
Author(s):  
Pascal Legendre

Electrophysiological recordings of outside-out patches to fast-flow applications of glycine were made on patches derived from the Mauthner cells of the 50-h-old zebrafish larva. As for glycinergic miniature inhibitory postsynaptic currents (mIPSCs), depolarizing the patch produced a broadening of the transient outside-out current evoked by short applications (1 ms) of a saturating concentration of glycine (3 mM). When the outside-out patch was depolarized from −50 to +20 mV, the peak current varied linearly with voltage. A 1-ms application of 3 mM glycine evoked currents that activated rapidly and deactivated biexponentially with time constants of ≈5 and ≈30 ms (holding potential of −50 mV). These two decay time constants were increased by depolarization. The fast deactivation time constant increased e-fold per 95 mV. The relative amplitude of the two decay components did not significantly vary with voltage. The fast component represented 64.2 ± 2.8% of the total current at −50 mV and 54.1 ± 10% at +20 mV. The 20–80% rise time of these responses did not show any voltage dependence, suggesting that the opening rate constant is insensitive to voltage. The 20–80% rise time was 0.2 ms at −70 mV and 0.22 ms at +20 mV. Responses evoked by 100–200 ms application of a low concentration of glycine (0.1 mM) had a biphasic rising phase reflecting the complex gating behavior of the glycine receptor. The time constant of these two components and their relative amplitude did not change with voltage, suggesting that modal shifts in the glycine-activated channel gating mode are not sensitive to the membrane potential. Using a Markov model to simulate glycine receptor gating behavior, we were able to mimic the voltage-dependent change in the deactivation time course of the responses evoked by 1-ms application of 3 mM glycine. This kinetics model incorporates voltage-dependent closing rate constants. It provides a good description of the time course of the onset of responses evoked by the application of a low concentration of glycine at all membrane potentials tested.

1992 ◽  
Vol 262 (4) ◽  
pp. H1197-H1207 ◽  
Author(s):  
D. A. Hanck ◽  
M. F. Sheets

The spontaneous hyperpolarizing shift in Na+ channel kinetics that occurs during a series of voltage-clamp recordings was characterized in single canine cardiac Purkinje cells at 10-13.5 degrees C. The change in the half-point of voltage-dependent availability, in the half-point of peak conductance, in the voltage dependence of deactivation and time to peak Na+ channel current (INa), and in the time constants of INa decay in response to step depolarizations were examined. The half points of availability and conductance shifted similarly, -0.41 +/- 0.13 and -0.47 +/- 0.19 mV/min, respectively (n = 14). These were directly correlated (slope 1.14 +/- 0.06, R2 = 0.81) with conductance shifting on average only -0.05 mV/min faster than availability. The deactivation time constant-voltage relationship shifted similarly to availability and conductance. Tail current decay time constants predicted the voltage dependence of the open to closed transition to be 0.9e-. Time to peak INa in response to step depolarizations changed e-fold for 25 mV but plateaued at positive potentials (531 microseconds, n = 22). INa decay was multiexponential between -40 and 80 mV. Decay time constants changed little as a function of voltage at positive potentials. The contribution of the second time constant to decay amplitude was 15-20% over the entire voltage range. Time to peak INa shifted in a curvilinear fashion, changing less late in an experiment. We conclude that the channel-voltage sensor responds to a changing fraction of the applied voltage during an experiment, producing similar rates of shift of voltage-dependent availability, conductance, and deactivation time constants.


1978 ◽  
Vol 71 (3) ◽  
pp. 285-299 ◽  
Author(s):  
B Scubon-Mulieri ◽  
R L Parsons

The influence of voltage on the time-course of desensitization onset and recovery has been studied at the frog neuromuscular junction. The activation-desensitization sequence was determined from carbachol-induced end-plate currents in potassium-depolarized fibers voltage-clamped either to -40 mV or +40 mV. The time-course of both desensitization onset and recovery developed exponentially, with onset occurring more rapidly than recovery. Desensitization onset was voltage dependent, the onset time constant being 8.3 +/- 1.3 s (11 fibers) at -40 mV and 19.3 +/- 3.4 s (15 fibers) at +40 mV. Recovery from desensitization was also influenced by voltage. The extent of recovery after 2 min was 80.4 +/- 6.3% in those fibers voltage-clamped to -40 mV and 57.4 +/- 3.6% in those fibers voltage-clamped to +40 mV. The voltage dependence of desenistization onset and recovery did not result from a difference in ability to control voltage at these two levels of membrane potential. These results demonstrate that in the potassium-depolarized preparation the processes controlling both desensitization onset and recovery of sensitivity from the desensitivity from the desensitized state are influenced by membrane voltage.


1994 ◽  
Vol 72 (1) ◽  
pp. 326-336 ◽  
Author(s):  
M. Andreasen ◽  
J. J. Hablitz

1. Whole-cell patch-clamp recordings were used to study paired-pulse facilitation (PPF) of the lateral perforant path input to the dentate gyrus in thin hippocampal slices. 2. Orthodromic stimulation of the lateral perforant pathway evoked a excitatory postsynaptic current (EPSC) with a latency of 3.3 +/- 0.1 ms (mean +/- SE) that fluctuated in amplitude. The EPSC had a rise time (10-90%) of 2.79 +/- 0.06 ms (n = 35) and decayed with a single exponential time course with a time-constant of 9.14 +/- 0.24 ms (n = 35). No correlation was found between the amplitude of the EPSC and the rise time or decay time-constant. The non-N-methyl-D-aspartate (NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione completely blocked the EPSC whereas the NMDA antagonist D-aminophosphonovaleric acid (APV) had modest effects. 3. When a test (T-)EPSC was preceded at an interval of 100 ms by a conditioning (C-)EPSC, a significant increase in the amplitude of the T-EPSC was seen in 38 out of 44 trials analyzed from a total of 27 granule cells. The average amount of PPF was 35.7 +/- 2.1%. There was no apparent correlation between the amount of PPF and the stimulation intensity or mean amplitude of the C-EPSC. The time course of the facilitated T-EPSC was not significantly different from that of the C-EPSC. 4. No correlation was found between the amplitude of the C-EPSC and that of the T-EPSC. Estimates of quantal content (mcv) were determined by calculating the ratio of the squared averaged EPSC amplitude (from 48 responses) to the variance of these responses (M2/sigma 2) whereas quantal amplitudes (qcv) were estimated by calculating the ratio of the response variance to average EPSC amplitude (sigma 2/M). PPF was found to be associated with an average increase in mcv of 64.8 +/- 7.2% (n = 38) whereas qcv was decreased by 12.1 +/- 3.8%. 5. The time course of PPF was studied by varying the interval between the C- and T-pulse from 10 to 400 ms while keeping the stimulation intensity constant. Maximal facilitation of the T-EPSC was obtained with interpulse intervals < or = 25 ms where the average facilitation amounted to approximately 70% (n = 6). The decline of facilitation was nearly exponential and was no longer evident with intervals > 350 ms.(ABSTRACT TRUNCATED AT 400 WORDS


1993 ◽  
Vol 102 (2) ◽  
pp. 217-237 ◽  
Author(s):  
B Mlinar ◽  
B A Biagi ◽  
J J Enyeart

The whole cell version of the patch clamp technique was used to identify and characterize voltage-gated Ca2+ channels in enzymatically dissociated bovine adrenal zona fasciculata (AZF) cells. The great majority of cells (84 of 86) expressed only low voltage-activated, rapidly inactivating Ca2+ current with properties of T-type Ca2+ current described in other cells. Voltage-dependent activation of this current was fit by a Boltzmann function raised to an integer power of 4 with a midpoint at -17 mV. Independent estimates of the single channel gating charge obtained from the activation curve and using the "limiting logarithmic potential sensitivity" were 8.1 and 6.8 elementary charges, respectively. Inactivation was a steep function of voltage with a v1/2 of -49.9 mV and a slope factor K of 3.73 mV. The expression of a single Ca2+ channel subtype by AZF cells allowed the voltage-dependent gating and kinetic properties of T current to be studied over a wide range of potentials. Analysis of the gating kinetics of this Ca2+ current indicate that T channel activation, inactivation, deactivation (closing), and reactivation (recovery from inactivation) each include voltage-independent transitions that become rate limiting at extreme voltages. Ca2+ current activated with voltage-dependent sigmoidal kinetics that were described by an m4 model. The activation time constant varied exponentially at test potentials between -30 and +10 mV, approaching a voltage-independent minimum of 1.6 ms. The inactivation time constant (tau i) also decreased exponentially to a minimum of 18.3 ms at potentials positive to 0 mV. T channel closing (deactivation) was faster at more negative voltages; the deactivation time constant (tau d) decreased from 8.14 +/- 0.7 to 0.48 +/- 0.1 ms at potentials between -40 and -150 mV. T channels inactivated by depolarization returned to the closed state along pathways that included two voltage-dependent time constants. tau rec-s ranged from 8.11 to 4.80 s when the recovery potential was varied from -50 to -90 mV, while tau rec-f decreased from 1.01 to 0.372 s. At potentials negative to -70 mV, both time constants approached minimum values. The low voltage-activated Ca2+ current in AZF cells was blocked by the T channel selective antagonist Ni2+ with an IC50 of 20 microM. At similar concentrations, Ni2+ also blocked cortisol secretion stimulated by adrenocorticotropic hormone. Our results indicate that bovine AZF cells are distinctive among secretory cells in expressing primarily or exclusively T-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 58 (6) ◽  
pp. 1468-1484 ◽  
Author(s):  
J. Johansen ◽  
J. Yang ◽  
A. L. Kleinhaus

1. The purely calcium-dependent action potential of the anterior lateral giant (ALG) cell in the leech Haementeria was examined under voltage clamp. 2. Analysis with ion substitutions showed that the ALG cell action potential is generated by only two time- and voltage-dependent conductance systems, an inward Ca-dependent current (ICa) and an outward Ca-dependent K current IK(Ca). 3. The kinetic properties of the inward current were examined both in Cs-loaded neurons with Ca as the current carrier as well as in Ba-containing Ringer solutions with Ba as the current carrier, since Ba effectively blocked all time- and voltage-dependent outward current. 4. During a maintained depolarization, Ba and Ca currents activated with a time constant tau m, they then inactivated with the decay following a single exponential time course with a time constant tau h. The time constants for decay of both Ba and Ca currents were comparable, suggesting that the mechanism of inactivation of ICa in the ALG cell is largely voltage dependent. In the range of potentials from 5 to 45 mV, tau m varied from 8 to 2 ms and tau h varied from 250 to 125 ms. 5. The activation of currents carried by Ba, after correction for inactivation, could be described reasonably well by the expression I'Ba = I'Ba(infinity) [1--exp(-t/tau m)]. 6. The steady-state activation of the Ba-conductance mBa(infinity) increased sigmoidally with voltage and was approximated by the equation mBa(infinity) = (1 + exp[(Vh-6)/3])-1. The steady-state inactivation hBa(infinity) varied with holding potential and could be described by the equation hBa(infinity) = [1 + exp(Vh + 10/7)]-1. Recovery from inactivation of IBa was best described by the sum of two exponential time courses with time constants of 300 ms and 1.75 s, respectively. 7. The outward current IK(Ca) developed very slowly (0.5–1 s to half-maximal amplitude) and did not inactivate during a 20-s depolarizing command pulse. Tail current decay of IK(Ca) followed a single exponential time course with voltage-dependent time constants of between 360 and 960 ms. The steady-state activation n infinity of IK(Ca) increased sigmoidally with depolarization as described by the equation n infinity = [1 + exp(Vh-13.5)/-8)]-1. 8. The reversal potentials of IK(Ca) tail currents were close to the expected equilibrium potential for potassium and they varied linearly with log [K]o with a slope of 51 mV. These results suggest a high selectivity of the conductance for K ions.(ABSTRACT TRUNCATED AT 400 WORDS)


Like the axolemma of the giant nerve fibre of the squid, the nodal membrane of frog myelinated nerve fibres after blocking transmembrane ionic currents exhibits asymmetrical displacement currents during and after hyperpolarizing and depolarizing voltage clamp pulses of equal size. The steady-state distribution of charges as a function of membrane potential is consistent with Boltzmann’s law (midpoint potential —33.7 mV; saturation value 17200 charges/(μm 2 ). The time course of the asymmetry current and the voltage dependence of its time constant are consistent with the notion that due to a sudden change in membrane potential the charges undergo a first order transition between two configurations. Size and voltage dependence of the time constant are similar to those of the activation of the sodium conductance assuming m 2 h kinetics, The results suggest the presence of ten times more sodium channels (5000/μm2) in the node of Ranvier than in the squid giant axon with similar sodium conductance per channel (2-3 pS),


1995 ◽  
Vol 105 (1) ◽  
pp. 49-72 ◽  
Author(s):  
J J Art ◽  
Y C Wu ◽  
R Fettiplace

A major factor determining the electrical resonant frequency of turtle cochlear hair cells is the time course of the Ca-activated K current (Art, J. J., and R. Fettiplace. 1987. Journal of Physiology. 385:207-242). We have examined the notion that this time course is dictated by the K channel kinetics by recording single Ca-activated K channels in inside-out patches from isolated cells. A hair cell's resonant frequency was estimated from its known correlation with the dimensions of the hair bundle. All cells possess BK channels with a similar unit conductance of approximately 320 pS but with different mean open times of 0.25-12 ms. The time constant of relaxation of the average single-channel current at -50 mV in 4 microM Ca varied between cells from 0.4 to 13 ms and was correlated with the hair bundle height. The magnitude and voltage dependence of the time constant agree with the expected behavior of the macroscopic K(Ca) current, whose speed may thus be limited by the channel kinetics. All BK channels had similar sensitivities to Ca which produced half-maximal activation for a concentration of approximately 2 microM at +50 mV and 12 microM at -50 mV. We estimate from the voltage dependence of the whole-cell K(Ca) current that the BK channels may be fully activated at -35 mV by a rise in intracellular Ca to 50 microM. BK channels were occasionally observed to switch between slow and fast gating modes which raises the possibility that the range of kinetics of BK channels observed in different hair cells reflects a common channel protein whose kinetics are regulated by an unidentified intracellular factor. Membrane patches also contained 30 pS SK channels which were approximately 5 times more Ca-sensitive than BK channels at -50 mV. The SK channels may underlie the inhibitory synaptic potential produced in hair cells by efferent stimulation.


1994 ◽  
Vol 71 (1) ◽  
pp. 119-128 ◽  
Author(s):  
D. A. Bayliss ◽  
F. Viana ◽  
M. C. Bellingham ◽  
A. J. Berger

1. Single-electrode voltage clamp recordings in a rat brain stem slice preparation were used to determine the characteristics and postnatal development of a hyperpolarization-activated inward current (Ih) in hypoglossal motoneurons (HMs). 2. In young adult HMs (> P21), a noninactivating, time- and voltage-dependent inward current was evident during hyperpolarizing voltage steps to membrane potentials negative to approximately -65 mV from depolarized holding potentials [Vh = -56.2 +/- 1.0 (SE) mV]. The averaged reversal potential (Erev) of the inward current, estimated using an extrapolation procedure, was -38.8 +/- 2.9 mV (n = 5), suggesting that a mixed cationic current underlies inward rectification in HMs. 3. The voltage dependence of Ih activation was determined from tail current relaxations that followed a family of voltage steps to different membrane potentials. Normalized tail current amplitudes were well-fitted with a single Boltzman function with a half-activation at -79.8 +/- 0.7 mV and slope factor = 5.3 +/- 0.3 (n = 8). 4. Time constants of Ih activation and deactivation were voltage-dependent. Activation proceeded more quickly with larger hyperpolarizing voltage steps; time constants averaged 389, 181, and 134 ms at -69, -82, and -95 mV, respectively (n = 6). Ih deactivated during depolarizing voltage steps from hyperpolarized holding potentials. Deactivation was faster with larger depolarizing steps; time constants averaged 321, 215, and 107 ms at -80, -71, and -62 mV, respectively (n = 4). 5. Ih was sensitive to extracellular cesium but relatively insensitive to extracellular barium. The current amplitude near half-activation (approximately -84 mV) was almost completely blocked (to 11% of control) by Cs+ (3 mM, n = 3) but was reduced to only 85 and 60% in 0.5 (n = 2) and 2 mM Ba2+ (n = 3), respectively. 6. There was a marked increase in the amplitude of Ih during postnatal development of HMs. Measured near half-activation, Ih was approximately 10-fold larger in adult (> or = P21; n = 20) than in neonatal HMs (< or = P8; n = 7). Input conductance (GN) was only threefold higher in the same sample of HMs. There were no apparent differences in the voltage dependence or Erev of Ih between neonatal and older HMs. These results suggest that the increased amplitude of Ih results from an increase in Ih current density.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 88 (6) ◽  
pp. 777-798 ◽  
Author(s):  
J R Hume ◽  
W Giles ◽  
K Robinson ◽  
E F Shibata ◽  
R D Nathan ◽  
...  

Individual myocytes were isolated from bullfrog atrium by enzymatic and mechanical dispersion, and a one-microelectrode voltage clamp was used to record the slow outward K+ currents. In normal [K+]o (2.5 mM), the slow outward current tails reverse between -95 and -100 mV. This finding, and the observed 51-mV shift of Erev/10-fold change in [K+]o, strongly suggest that the "delayed rectifier" in bullfrog atrial cells is a K+ current. This current, IK, plays an important role in initiating repolarization, and it is distinct from the quasi-instantaneous, inwardly rectifying background current, IK. In atrial cells, IK does not exhibit inactivation, and very long depolarizing clamp steps (20 s) can be applied without producing extracellular K+ accumulation. The possibility of [K+]o accumulation contributing to these slow outward current changes was assessed by (a) comparing reversal potentials measured after short (2 s) and very long (15 s) activating prepulses, and (b) studying the kinetics of IK at various holding potentials and after systematically altering [K+]o. In the absence of [K+]o accumulation, the steady state activation curve (n infinity) and fully activated current-voltage (I-V) relation can be obtained directly. The threshold of the n infinity curve is near -50 mV, and it approaches a maximum at +20 mV; the half-activation point is approximately -16 mV. The fully activated I-V curve of IK is approximately linear in the range -40 to +30 mV. Semilog plots of the current tails show that each tail is a single-exponential function, which suggests that only one Hodgkin-Huxley conductance underlies this slow outward current. Quantitative analysis of the time course of onset of IK and of the corresponding envelope of tails demonstrate that the activation variable, n, must be raised to the second power to fit the sigmoid onset accurately. The voltage dependence of the kinetics of IK was studied by recording and curve-fitting activating and deactivating (tail) currents. The resulting 1/tau n curve is U-shaped and somewhat asymmetric; IK exhibits strong voltage dependence in the diastolic range of potentials. Changes in the [Ca2+]o in the superfusing Ringer's, and/or addition of La3+ to block the transmembrane Ca2+ current, show that the time course and magnitude of IK are not significantly modulated by transmembrane Ca2+ movements, i.e., by ICa. These experimentally measured voltage- and time-dependent descriptors of IK strongly suggest an important functional role for IK in atrial tissue: it initiates repolarization and can be an important determinant of rate-induced changes in action potential duration.


1989 ◽  
Vol 93 (3) ◽  
pp. 551-564 ◽  
Author(s):  
Y Yamamoto ◽  
S L Hu ◽  
C Y Kao

In single myocytes of the guinea pig taenia coli, dispersed by enzymatic digestion, the late outward current is carried by K+. It has both a Ca2+-activated component and a voltage-dependent component which is resistant to external Co2+. The reversal potential is -84 mV, and the channel(s) for it are highly selective to K+. At 33 degrees C, the activation follows n2 kinetics, with a voltage-dependent time constant of 10.6 ms at 0 mV, which shortens to 1.7 ms at +70 mV. Deactivation follows a single-exponential time course, with a voltage-dependent time constant of 11 ms at -50 mV, which lengthens to 33 ms at -20 mV. During a 4.5-s maintained depolarization, IK inactivates, most of it into two exponential components, but there is a small noninactivating residue. It is surmised that during an action potential under physiological conditions, there is sufficient IK to cause repolarization.


Sign in / Sign up

Export Citation Format

Share Document