Prior Information in Motor and Premotor Cortex: Activity During the Delay Period and Effect on Pre-Movement Activity

2000 ◽  
Vol 84 (2) ◽  
pp. 986-1005 ◽  
Author(s):  
Donald J. Crammond ◽  
John F. Kalaska

In instructed-delay (ID) tasks, instructional cues provide prior information about the nature of a movement to execute after a delay. Neuronal responses in dorsal premotor cortex (PMd) during the instructed-delay period (IDP) between the CUE and subsequent GO signals are presumed to reflect early planning stages initiated by the prior information. In contrast, in multiple-choice reaction-time (RT) tasks, all motor planning and execution processes must occur after the GO signal. These assumptions predict that neuronal planning correlates recorded during the IDP of ID trials should share common features with early post-GO activity in RT trials, and that those response components need not be recapitulated after the GO signal of ID trials. These two predictions were tested by comparing activity recorded in RT and ID tasks from 503 neurons in PMd and caudal (MIc) and rostral (MIr) primary motor cortex. The incidence and strength of directionally tuned IDP activity declined progressively from PMd to MIc. The directional tuning of activity during the IDP of ID trials was more similar to that in the reaction-time epoch (RTE) of RT trials than after movement onset, especially in PMd. A modulation of post-GO activity was often observed between RT and ID trials and was confined mainly to the RTE. This effect was also most prominent in PMd. The most common change was a reduction in intensity of short-latency phasic responses to the GO signal between RT and ID trials, especially in PMd cells with a short-latency phasic response to CUE signals. However, the largest group of cells in each area showed no large change in peak RTE activity between RT and ID trials, whether they were active in the IDP or not. Since early phasic CUE-related responses are least likely to be recapitulated after the GO signal in ID trials, they may be a neuronal correlate of an early planning stage such as response selection. Tonic IDP responses, which are not as strongly associated with a post-GO reduction in activity, may be related to other aspects of motor planning and preparation. Finally, a major component of the movement-related activity in both MI and PMd is not susceptible to modification by prior information and is indivisibly coupled temporally to movement execution.

2010 ◽  
Vol 104 (5) ◽  
pp. 2603-2614 ◽  
Author(s):  
Michael A. Nitsche ◽  
Michaela Jakoubkova ◽  
Nivethida Thirugnanasambandam ◽  
Leonie Schmalfuss ◽  
Sandra Hullemann ◽  
...  

Motor learning and memory consolidation require the contribution of different cortices. For motor sequence learning, the primary motor cortex is involved primarily in its acquisition. Premotor areas might be important for consolidation. In accordance, modulation of cortical excitability via transcranial DC stimulation (tDCS) during learning affects performance when applied to the primary motor cortex, but not premotor cortex. We aimed to explore whether premotor tDCS influences task performance during motor memory consolidation. The impact of excitability-enhancing, -diminishing, or placebo premotor tDCS during rapid eye movement (REM) sleep on recall in the serial reaction time task (SRTT) was explored in healthy humans. The motor task was learned in the evening. Recall was performed immediately after tDCS or the following morning. In two separate control experiments, excitability-enhancing premotor tDCS was performed 4 h after task learning during daytime or immediately before conduction of a simple reaction time task. Excitability-enhancing tDCS performed during REM sleep increased recall of the learned movement sequences, when tested immediately after stimulation. REM density was enhanced by excitability-increasing tDCS and reduced by inhibitory tDCS, but did not correlate with task performance. In the control experiments, tDCS did not improve performance. We conclude that the premotor cortex is involved in motor memory consolidation during REM sleep.


2021 ◽  
Vol 118 (6) ◽  
pp. e2012658118
Author(s):  
Abdulraheem Nashef ◽  
Rea Mitelman ◽  
Ran Harel ◽  
Mati Joshua ◽  
Yifat Prut

We studied correlated firing between motor thalamic and cortical cells in monkeys performing a delayed-response reaching task. Simultaneous recording of thalamocortical activity revealed that around movement onset, thalamic cells were positively correlated with cell activity in the primary motor cortex but negatively correlated with the activity of the premotor cortex. The differences in the correlation contrasted with the average neural responses, which were similar in all three areas. Neuronal correlations reveal functional cooperation and opposition between the motor thalamus and distinct motor cortical areas with specific roles in planning vs. performing movements. Thus, by enhancing and suppressing motor and premotor firing, the motor thalamus can facilitate the transition from a motor plan to execution.


2011 ◽  
Vol 33 (2) ◽  
pp. 419-430 ◽  
Author(s):  
Sergiu Groppa ◽  
Boris H. Schlaak ◽  
Alexander Münchau ◽  
Nicole Werner-Petroll ◽  
Janin Dünnweber ◽  
...  

Author(s):  
Astrid Prochnow ◽  
Moritz Mückschel ◽  
Christian Beste

Abstract To respond as quickly as possible in a given task is a widely used instruction in cognitive neuroscience, however, the neural processes modulated by this common experimental procedure remain largely elusive. We investigated the underlying neurophysiological processes combining EEG signal decomposition (residue iteration decomposition, RIDE) and source localization. We show that trial-based response speed instructions enhance behavioral performance in conflicting trials, but slightly impair performance in non-conflicting trials. The modulation seen in conflicting trials was found at several coding levels in EEG data using RIDE. In the S-cluster N2 time window, this modulation was associated with modulated activation in the posterior cingulate cortex and the superior frontal gyrus. Further, in the C-cluster P3 time window, this modulation was associated with modulated activation in the middle frontal gyrus. Interestingly, in the R-cluster P3 time window this modulation was strongest according to statistical effect sizes, associated with modulated activity in the primary motor cortex. Reaction-time feedback mainly modulates response motor execution processes, while attentional and response selection processes are less affected. The study underlines the importance of being aware of how experimental instructions influence the behavior and neurophysiological processes.


2007 ◽  
Vol 97 (1) ◽  
pp. 348-359 ◽  
Author(s):  
Mark M. Churchland ◽  
Krishna V. Shenoy

We tested the hypothesis that delay-period activity in premotor cortex is essential to movement preparation. During a delayed-reach task, we used subthreshold intracortical microstimulation to disrupt putative “preparatory” activity. Microstimulation led to a highly specific increase in reach reaction time. Effects were largest when activity was disrupted around the time of the go cue. Earlier disruptions, which presumably allowed movement preparation time to recover, had only a weak impact. Furthermore, saccadic reaction time showed little or no increase. Finally, microstimulation of nearby primary motor cortex, even when slightly suprathreshold, had little effect on reach reaction time. These findings provide the first evidence, of a causal and temporally specific nature, that activity in premotor cortex is fundamental to movement preparation. Furthermore, although reaction times were increased, the movements themselves were essentially unperturbed. This supports the suggestion that movement preparation is an active and actively monitored process and that movement can be delayed until inaccuracies are repaired. These results are readily interpreted in the context of the recently developed optimal-subspace hypothesis.


1991 ◽  
Vol 66 (3) ◽  
pp. 705-718 ◽  
Author(s):  
H. Mushiake ◽  
M. Inase ◽  
J. Tanji

1. Single-cell activity was recorded from three different motor areas in the cerebral cortex: the primary motor cortex (MI), supplementary motor area (SMA), and premotor cortex (PM). 2. Three monkeys (Macaca fuscata) were trained to perform a sequential motor task in two different conditions. In one condition (visually triggered task, VT), they reached to and touched three pads placed in a front panel by following lights illuminated individually from behind the pads. In the other condition (internally guided task, IT), they had to remember a predetermined sequence and press the three pads without visual guidance. In a transitional phase between the two conditions, the animals learned to memorize the correct sequence. Auditory instruction signals (tones of different frequencies) told the animal which mode it was in. After the instruction signals, the animals waited for a visual signal that triggered the first movement. 3. Neuronal activity was analyzed during three defined periods: delay period, premovement period, and movement period. Statistical comparisons were made to detect differences between the two behavioral modes with respect to the activity in each period. 4. Most, if not all, of MI neurons exhibited similar activity during the delay, premovement, and movement periods, regardless of whether the sequential motor task was visually guided or internally determined. 5. More than one-half of the SMA neurons were preferentially or exclusively active in relation to IT during both the premovement (55%) and movement (65%) periods. In contrast, PM neurons were more active (55% and 64% during the premovement and movement periods) in VT. 6. During the instructed-delay period, a majority of SMA neurons exhibited preferential or exclusive relation to IT whereas the activity in PM neurons was observed equally in different modes. 7. Two types of neurons exhibiting properties of special interest were observed. Sequence-specific neurons (active in a particular sequence only) were more common in SMA, whereas transition-specific neurons (active only at the transitional phase) were more common in PM. 8. Although a strict functional dichotomy is not acceptable, these observations support a hypothesis that the SMA is more related to IT, whereas PM is more involved in VT. 9. Some indications pointing to a functional subdivision of PM are obtained.


2006 ◽  
Vol 96 (3) ◽  
pp. 1492-1506 ◽  
Author(s):  
John G. O'Leary ◽  
Nicholas G. Hatsopoulos

Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys ( Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.


1989 ◽  
Vol 61 (3) ◽  
pp. 534-549 ◽  
Author(s):  
A. Riehle ◽  
J. Requin

1. This study was devoted to the neuronal processes underlying the construction of the motor program. Two monkeys were trained in a choice reaction time task to perform precise wrist flexion and extension movements of small and large extent. During a trial, the first visual signal, the preparatory signal (PS), informed the animal completely, partially, or not at all about direction and/or extent of the forthcoming movement. After a constant waiting period, a second visual signal, the response signal (RS), was illuminated calling for execution of the requested movement. 2. Reaction time (RT) and movement time (MT) measurements during the training as well as the recording sessions revealed that providing prior information about movement parameters strongly affected RT, but only slightly affected MT. Reaction time decreased in relation to the amount (number of movement parameters precued) and the type of prior information. Providing information about movement direction shortened RT much more than providing information about movement extent. Behavioral data support a parametric conception of motor programming, i.e., that the programming of the different movement parameters results from assembling separate processes of different duration. These results are compatible with the model in which programming processes are serially and hierachically ordered, movement direction being processed before movement extent. 3. Single-cell recording techniques were used to study neuronal activity of the primary motor (MI) and the premotor (PM) cortex, contralateral to the active arm. The activity of 155 neurons of MI and 158 neurons of PM was recorded during performance of the task. Of these 313 neurons, only 14 neurons did not change their activity during execution of the task. Two hundred and seven neurons whose activity changes were related to movement direction and/or movement extent have been selected for the further study. They were classified into three main groups: 1) execution-related neurons (49 in MI, 27 in PM), 2) preparation- and execution-related neurons (48 in MI, 54 in PM), and 3) preparation-related neurons (8 in MI, 21 in PM). 4. Directionally selective, execution-related neurons were found to be more frequently located within MI (81/105, 77.1%) than within PM (55/102, 53.9%), whereas directionally selective, preparation-related neurons appeared tobe more frequently located within PM (47/102, 46.1%) than within MI (24/105, 22.9%).(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document