scholarly journals Self-Motion Signals in Vestibular Nuclei Neurons Projecting to the Thalamus in the Alert Squirrel Monkey

2009 ◽  
Vol 101 (4) ◽  
pp. 1730-1741 ◽  
Author(s):  
Vladimir Marlinski ◽  
Robert A. McCrea

Sixty vestibular nuclei neurons antidromically activated by electrical stimulation of the ventroposterior thalamus were recorded in two alert squirrel monkeys. The majority of these neurons were monosynaptically activated by vestibular nerve electrical stimulation. Forty-seven neurons responded to animal rotations around the earth-vertical axis; 16 of them also responded to translations in the horizontal plane. The mean sensitivity to 0.5-Hz rotations of 80°/s velocity was 0.40 ± 0.31 spikes·s−1·deg−1·s−1. Rotational responses were in phase with stimulus velocity. Sensitivities to 0.5-Hz translations of 0.1 g acceleration varied from 92.2 to 359 spikes·s−1· g−1 and response phases varied from 10.1° lead to −98° lag. The firing behavior in 28 neurons was studied during rotation of the whole animal, of the trunk, and voluntary and involuntary rotations of the head. Two classes of vestibulothalamic neurons were distinguished. One class of neurons generated signals related to movement of the head that were similar either when the head and trunk move together or when the head moves on the stationary trunk. A fraction of these neurons fired during involuntary head movements only. A second class of neurons generated signals related to movement of the trunk. They responded when the trunk moved alone or simultaneously with the head, but did not respond to head rotations while the trunk was stationary.

2000 ◽  
Vol 84 (2) ◽  
pp. 1103-1106 ◽  
Author(s):  
Tyson A. Tu ◽  
E. Gregory Keating

The frontal eye field (FEF), an area in the primate frontal lobe, has long been considered important for the production of eye movements. Past studies have evoked saccade-like movements from the FEF using electrical stimulation in animals that were not allowed to move their heads. Using electrical stimulation in two monkeys that were free to move their heads, we have found that the FEF produces gaze shifts that are composed of both eye and head movements. Repeated stimulation at a site evoked gaze shifts of roughly constant amplitude. However, that gaze shift could be accomplished with varied amounts of head and eye movements, depending on their (head and eye) respective starting positions. This evidence suggests that the FEF controls visually orienting movements using both eye and head rotations rather than just shifting the eyes as previously thought.


1989 ◽  
Vol 257 (1) ◽  
pp. G24-G29
Author(s):  
W. D. Barber ◽  
C. S. Yuan

The brain stem neuronal responses to electrical stimulation of gastric branches of the ventral vagal trunk serving the proximal stomach were localized and evaluated in anesthetized cats. The responses were equally distributed bilaterally in the region of nucleus solitarius in the caudal brain stem. The mean latency of the response was 289 +/- 46 (SD) ms, which translated into a conduction velocity of less than 1 m/s based on the distance between the stimulating and recording electrodes. The responses consisted of single and multiple spikes that showed slight variability in the latency, indicating orthodromic activation via a synapse in approximately 98% of the responses recorded. Forty two percent of the units tested showed evidence of convergence of input from vagal afferent fibers in different branches of the ventral vagal trunk that served the proximal stomach. The resultant activity pattern of the unitary response appeared to be the product of 1) the gastric sensory input or modality conveyed by the afferent source and 2) the time of arrival and diversity of modalities served by other gastric afferents impinging on the unit. This provides a mechanism capable of responding on the basis of specific sensory modalities that dynamically reflect ongoing events monitored and conveyed by other gastric afferents in the region.


After taking a summary review of the methods employed by Mr. Baily for determining, on the plan devised by Mr. Cavendish, the mean density of the earth, and of the anomalies, hitherto unac­counted for, which had introduced perplexity in the results obtained, the author, suspecting that these anomalies had their source in the variable magnetic states of the masses which were the subject of experiment, traces the effects which such an influence might be supposed to have on those results. He finds that, the attraction arising from gravitation between a mass and one of the balls being exceedingly minute, an almost inconceivably feeble magnetic state may be the cause of great perturbations. He then proceeds to in­vestigate the subject by the application of mathematical analysis; from which he is led to the conclusion that the masses and balls do actually exert on one another influences which are independent of the action of gravitation. He finds that such influences are of a very fluctuating nature; the action arising from them being either positive or negative, and its sign also changing in each revolution as the masses are turned round a vertical axis; and he observes that such action may either fall short of that arising from gravitation or exceed it many times. Such disturbing force he conceives can be no other than a magnetic influence; not however one of the ordinary kind, but that which Faraday has recently discovered as affecting all diamagnetic bodies. The author concludes by proposing methods by which the inquiry should in future be conducted, so as to obviate or eliminate this source of error. Such an inquiry, he remarks, would, by exhibit­ing the magnetic and diamagnetic powers under new aspects, lead, in all probability, to important consequences.


1957 ◽  
Vol 3 (4) ◽  
pp. 611-614 ◽  
Author(s):  
Eduardo De Robertis ◽  
Alberto Vaz Ferreira

The nerve endings of the adrenal medulla of the rabbit were studied under the electron microscope in the normal condition and after prolonged electrical stimulation of the splanchnic nerve. With a stimulus of 100 pulses per second for 10 minutes, there is an increase in the number of synaptic vesicles in the nerve ending. The mean number is of 82.6 vesicles per square micron in the normal and of 132.7 per square micron in the stimulated glands. With a stimulus of 400 pulses per second for 10 minutes, there is a considerable depletion of synaptic vesicles and other changes occur in the nerve endings. The mean number of vesicles is of 29.2 per square micron. These results are interpreted as indicative of an increased activity of the ending in one case, and as a diminished activity and fatigue of the synaptic junction in the other.


1983 ◽  
Vol 107 (1) ◽  
pp. 21-47 ◽  
Author(s):  
C.J.H. ELLIOTT

(1) Hairs in the subcostal hair plates of the wings of crickets have a high angular stiffness (5.5μNm rad1) when bent about their base. The mean threshold required to elicit action potentials is 15°. Viscous drag from air movements will not deflect the hairs sufficiently to excite them; this will only occur when the hair is bent by the opposite wing. (2) The hair sensillae project to the ventral association area of the mesothoracic ganglion, but the endings of the stridulatory motor neurones are all in dorsal or lateral neuropiles of the thoracic ganglia. (3) Electrical stimulation of the hair plates evokes reliable EPSPs in opener (M99), closer (M90) and wing folding (M85) motor neurones, after latencies of 4–20 ms, depending on the neurone. Properties of the hairs and motor neurones suggest that these EPSPs in the wing folding muscle (M85) and closer (M90) could play an important role in the control of wing position seen in recent behavioural study.


1959 ◽  
Vol 197 (2) ◽  
pp. 454-460 ◽  
Author(s):  
F. Bergmann ◽  
J. Lachmann ◽  
M. Monnier ◽  
P. Krupp

Transverse cuts at various levels of the rabbit brain stem have different effects on vestibular nystagmus and on central nystagmus elicited by electrical stimulation of the mesodiencephalic nystagmogenic area. While transections rostral to the sensitive region enhance both, probably by elimination of inhibitory influences from cortex or retina, transections caudal to this region, but rostral to the colliculi, abolish central nystagmus only. Transections at the level of the inferior colliculus abolish vestibular nystagmus only, while intermediate cuts may eliminate either response. When central nystagmus alone survives, its character is changed in a specific way indicating the important role of the vestibular nuclei in normal central nystagmus. These observations lead to an approximate localization of the common substrate for conjugate eye movements involved both in central and vestibular nystagmus. Longitudinal cuts through the posterior commissure provoke a temporary disconjugated nystagmus not described hitherto.


1976 ◽  
Vol 64 (2) ◽  
pp. 431-445
Author(s):  
I. D. McFarlane

1. Pulses in two slow conducting systems, the ectodermal SS 1 and the endodermal SS 2, were recorded during shell-climbing behaviour. The mean pulse interval of SS 1 pulses was 7–4 s and that of SS 2 pulses was 6-4 s. Activity in both systems may arise as a sensory response of tentacles to shell contact, but the SS 1 and SS 2 may not share the same receptors. 2. Electrical stimulation of the SS 1 and SS 2 together, at a frequency of 1 shock every 5 s, elicits shell-climbing behaviour in the absence of a shell. 3. Low-frequency nerve-net activity (about 1 pulse every 15 s) accompanies column bending during both normal and electrically elicited responses. This activity probably arises as a result of column bending and is not due to a sensory response to the shell.


Reproduction ◽  
2006 ◽  
Vol 131 (3) ◽  
pp. 603-611 ◽  
Author(s):  
Michiko Nakai ◽  
Naomi Kashiwazaki ◽  
Akiko Takizawa ◽  
Naoki Maedomari ◽  
Manabu Ozawa ◽  
...  

In pigs, failure of sperm nuclear decondensation has been reported after injection into oocytes. We examined the effects of pretreating sperm heads with Triton X-100 (TX-100) and dithiothreitol (DTT) and of electrical stimulation of oocytes after sperm head injection on time-dependent morphologic changes in sperm nuclei andin vitrodevelopment to the blastocyst stage. In experiment 1, spermatozoa were pretreated with 1% TX-100 and 5 mM DTT (T + D) or not treated, and then injected intoin vitromatured oocytes. Electrical stimulation (1.5 kV/cm, 20 μs DC pulse) was applied to the oocytes 1 h after injection (stimulated group) or was not applied (unstimulated group). Some of the oocytes in each group were evaluated at hourly intervals until 10 h after injection for morphologic changes in the sperm nuclei. Unstimulated oocytes injected with untreated spermatozoa showed a delayed peak in the rate of nuclear decondensation (39.4–44.1%, 3–6 h after injection) compared with oocytes injected with T + D-treated spermatozoa (57.0% and 52.6%, 1 and 2 h, respectively). The rate of male pronucleus formation peaked 6 h after stimulation (by 40–60%) after injected oocytes had been stimulated with an electrical pulse, irrespective of whether or not the spermatozoa had been pretreated. In unstimulated oocytes, the rate of male pronucleus formation did not increase and stayed at the basal level (less than 20%) throughout the culture period, regardless of the sperm treatment. Thus, T + D treatment of spermatozoa did not affect completion of fertilization. In experiment 2, we evaluated the effects of electrical stimulation and sperm treatment with T + D on the rate of blastocyst formation and the mean number of cells per blastocyst. Oocytes stimulated after injection with either T + D-treated or untreated spermatozoa showed significantly higher percentages of blastocyst formation (24.8% and 27.1% respectively) than did unstimulated oocytes (1.1% and 4.1% for T + D-treated and untreated respectively;P< 0.01 by Duncan’s multiple-range test). The rate of blastocyst formation did not differ between the T + D-treated and untreated groups. The mean number of cells per blastocyst did not differ among any of the groups (14.0–29.4 cells). These results suggest that pretreatment of sperm with TX-100 and DTT shifted the timing of sperm nuclear decondensation forward. However, pronucleus formation and development to the blastocyst stagein vitrowere not improved by sperm treatment. Thus, electrical stimulation of injected oocytes enhancesin vitrodevelopment to the blastocyst stage in pigs.


2003 ◽  
Vol 89 (6) ◽  
pp. 2961-2974 ◽  
Author(s):  
Julio C. Martinez-Trujillo ◽  
Hongying Wang ◽  
J. Douglas Crawford

The supplementary eye fields (SEFs), located on the dorsomedial surface of the frontal cortex, are involved in high-level aspects of saccade generation. Some reports suggest that the same area could also be involved in the generation of motor commands for the head. If so, it is important to establish whether this structure encodes eye and head commands separately or gaze commands that give rise to coordinated eye-head movements. Here we systematically stimulated (50 μA, 300 Hz, 200 ms) the SEF of two head-free (head unrestrained) macaques while recording three-dimensional eye and head rotations. A total of 55 sites were found to consistently elicit saccade-like gaze movements, always in the contralateral direction with variable vertical components, and ranging in average amplitude from 5 to 60°. These movements were always a combination of eye-in-head saccades and head-in-space movements. We then performed a comparison between these movements and natural gaze shifts. The kinematics of the elicited movements (i.e., their temporal structure, their velocity-amplitude relationships, and the relative contributions of the eye and the head as a function of movement amplitude) were indistinguishable from those of natural gaze shifts. Additionally, they obeyed the same three-dimensional constraints as natural gaze shifts (i.e., eye-in-head movements obeyed Listing's law, whereas head- and eye-in-space movements obeyed Donders' law). In summary, gaze movements evoked by stimulating the SEF were indistinguishable from natural coordinated eye-head gaze shifts. Based on this we conclude that the SEF explicitly encodes gaze and that the kinematics aspects of eye-head coordination are implicitly specified by mechanisms downstream from the SEF.


Sign in / Sign up

Export Citation Format

Share Document