Central nystagmus. III. Functional correlations of mesodiencephalic nystagmogenic center

1959 ◽  
Vol 197 (2) ◽  
pp. 454-460 ◽  
Author(s):  
F. Bergmann ◽  
J. Lachmann ◽  
M. Monnier ◽  
P. Krupp

Transverse cuts at various levels of the rabbit brain stem have different effects on vestibular nystagmus and on central nystagmus elicited by electrical stimulation of the mesodiencephalic nystagmogenic area. While transections rostral to the sensitive region enhance both, probably by elimination of inhibitory influences from cortex or retina, transections caudal to this region, but rostral to the colliculi, abolish central nystagmus only. Transections at the level of the inferior colliculus abolish vestibular nystagmus only, while intermediate cuts may eliminate either response. When central nystagmus alone survives, its character is changed in a specific way indicating the important role of the vestibular nuclei in normal central nystagmus. These observations lead to an approximate localization of the common substrate for conjugate eye movements involved both in central and vestibular nystagmus. Longitudinal cuts through the posterior commissure provoke a temporary disconjugated nystagmus not described hitherto.

2000 ◽  
Vol 203 (3) ◽  
pp. 435-445
Author(s):  
M. Wildman

The position of the coxal segment of the locust hind leg relative to the thorax is monitored by a variety of proprioceptors, including three chordotonal organs and a myochordotonal organ. The sensory neurons of two of these proprioceptors, the posterior joint chordotonal organ (pjCO) and the myochordotonal organ (MCO), have axons in the purely sensory metathoracic nerve 2C (N2C). The connections made by these afferents with metathoracic motor neurons innervating thoraco-coxal and wing muscles were investigated by electrical stimulation of N2C and by matching postsynaptic potentials in motor neurons with afferent spikes in N2C. Stretch applied to the anterior rotator muscle of the coxa (M121), with which the MCO is associated, evoked sensory spikes in N2C. Some of the MCO afferent neurons make direct excitatory chemical synaptic connections with motor neurons innervating the thoraco-coxal muscles M121, M126 and M125. Parallel polysynaptic pathways via unidentified interneurons also exist between MCO afferents and these motor neurons. Connections with the common inhibitor 1 neuron and motor neurons innervating the thoraco-coxal muscles M123/4 and wing muscles M113 and M127 are polysynaptic. Afferents of the pjCO also make polysynaptic connections with motor neurons innervating thoraco-coxal and wing muscles, but no evidence for monosynaptic pathways was found.


2018 ◽  
Vol 204 (9-10) ◽  
pp. 835-847 ◽  
Author(s):  
Martin Hitier ◽  
Go Sato ◽  
Yan-Feng Zhang ◽  
Yiwen Zheng ◽  
Stephane Besnard ◽  
...  

2004 ◽  
Vol 287 (4) ◽  
pp. H1721-H1729 ◽  
Author(s):  
Koji Miyazaki ◽  
Satoshi Komatsu ◽  
Mitsuo Ikebe ◽  
Richard A. Fenton ◽  
James G. Dobson

Adenosine-induced antiadrenergic effects in the heart are mediated by adenosine A1 receptors (A1R). The role of PKCε in the antiadrenergic action of adenosine was explored with adult rat ventricular myocytes in which PKCε was overexpressed. Myocytes were transfected with a pEGFP-N1 vector in the presence or absence of a PKCε construct and compared with normal myocytes. The extent of myocyte shortening elicited by electrical stimulation of quiescent normal and transfected myocytes was recorded with video imaging. PKCε was found localized primarily in transverse tubules. The A1R agonist chlorocyclopentyladenosine (CCPA) at 1 μM rendered an enhanced localization of PKCε in the t-tubular system. The β-adrenergic agonist isoproterenol (Iso; 0.4 μM) elicited a 29–36% increase in myocyte shortening in all three groups. Although CCPA significantly reduced the Iso-produced increase in shortening in all three groups, the reduction caused by CCPA was greatest with PKCε overexpression. The CCPA reduction of the Iso-elicited shortening was eliminated in the presence of a PKCε inhibitory peptide. These results suggest that the translocation of PKCε to the t-tubular system plays an important role in A1R-mediated antiadrenergic actions in the heart.


2000 ◽  
Vol 84 (2) ◽  
pp. 1103-1106 ◽  
Author(s):  
Tyson A. Tu ◽  
E. Gregory Keating

The frontal eye field (FEF), an area in the primate frontal lobe, has long been considered important for the production of eye movements. Past studies have evoked saccade-like movements from the FEF using electrical stimulation in animals that were not allowed to move their heads. Using electrical stimulation in two monkeys that were free to move their heads, we have found that the FEF produces gaze shifts that are composed of both eye and head movements. Repeated stimulation at a site evoked gaze shifts of roughly constant amplitude. However, that gaze shift could be accomplished with varied amounts of head and eye movements, depending on their (head and eye) respective starting positions. This evidence suggests that the FEF controls visually orienting movements using both eye and head rotations rather than just shifting the eyes as previously thought.


2020 ◽  
Vol 21 (6) ◽  
pp. 2099 ◽  
Author(s):  
Eugeniusz Małkowski ◽  
Krzysztof Sitko ◽  
Michał Szopiński ◽  
Żaneta Gieroń ◽  
Marta Pogrzeba ◽  
...  

Hormesis, which describes the stimulatory effect of low doses of toxic substances on growth, is a well-known phenomenon in the plant and animal kingdoms. However, the mechanisms that are involved in this phenomenon are still poorly understood. We performed preliminary studies on corn coleoptile sections, which showed a positive correlation between the stimulation of growth by Cd or Pb and an increase in the auxin and H2O2 content in the coleoptile sections. Subsequently, we grew corn seedlings in hydroponic culture and tested a wide range of Cd or Pb concentrations in order to determine hormetic growth stimulation. In these seedlings the gas exchange and the chlorophyll a fluorescence, as well as the content of chlorophyll, flavonol, auxin and hydrogen peroxide, were measured. We found that during the hormetic stimulation of growth, the response of the photosynthetic apparatus to Cd and Pb differed significantly. While the application of Cd mostly caused a decrease in various photosynthetic parameters, the application of Pb stimulated some of them. Nevertheless, we discovered that the common features of the hormetic stimulation of shoot growth by heavy metals are an increase in the auxin and flavonol content and the maintenance of hydrogen peroxide at the same level as the control plants.


1978 ◽  
Vol 235 (3) ◽  
pp. H289-H294 ◽  
Author(s):  
M. P. Kaye ◽  
G. M. Tyce

To study the possible role of uptake of [3H]norepinephrine ([3H]NE) as an indicator of sympathetic reinnervation of the surgically denervated canine heart, uptake was determined from multiple areas of hearts at various stages of reinnervation (1--6 mo), and these data were correlated with myocardial catecholamine content and functional response of the heart to electrical stimulation of the sympathetic nerves. Our experiments confirm that NE content correlates poorly with the degree of reinnervation of the previously denervated canine heart. There is, however, a progressive increase of [3H]NE uptake from 1 mo to 6 mo, at which time uptake has returned to approximately 57% of control values in the left atrium. The development of the storage mechanism lags far behind the specific-membrane mechanism for uptake in the reinnervating surgically denervated canine heart.


1995 ◽  
Vol 73 (2) ◽  
pp. 506-514 ◽  
Author(s):  
E. R. Reiter ◽  
M. C. Liberman

1. The present study attempts to resolve discrepancies in the reported role of olivocochlear (OC) efferent activation in protecting the inner ear from acoustic overstimulation: in previous studies, activating the OC system in guinea pigs reduced the threshold shift caused by 1 min monaural exposure to a 10-kHz tone; whereas unilateral OC activation in cats had no effect on threshold shifts following binaural exposure to a 10 min 6-kHz tone. 2. In this study, anesthetized and curarized guinea pigs were exposed either monaurally or binaurally to tones of different duration (1-5 min), frequency (6 to 10 kHz) and intensity (105-118 dB SPL). For each exposure condition, threshold shifts were compared among ears with different levels of OC activation: in some cases, the OC bundle (OCB) was electrically stimulated during (and/or before) the acoustic overexposure; in others, the OCB was cut before the exposure; in control cases, the OCB was neither cut nor electrically stimulated. 3. Electrical stimulation of the OCB delivered simultaneously with acoustic overstimulation produced significant reductions in threshold shift only for acoustic exposures at higher frequencies (8 and 10 kHz) and shorter durations (1 and 2 min). The protective effects on 1-min exposures could be extinguished by prior stimulation of the OCB, i.e., if the OC stimulation was turned on 4 min before the acoustic overexposure.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 80 (6) ◽  
pp. 3373-3379 ◽  
Author(s):  
A. K. Moschovakis ◽  
Y. Dalezios ◽  
J. Petit ◽  
A. A. Grantyn

Moschovakis, A. K., Y. Dalezios, J. Petit, and A. A. Grantyn. New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J. Neurophysiol. 80: 3373–3379, 1998. Electrical stimulation of the feline superior colliculus (SC) is known to evoke saccades whose size depends on the site stimulated (the “characteristic vector” of evoked saccades) and the initial position of the eyes. Similar stimuli were recently shown to produce slow drifts that are presumably caused by relatively direct projections of the SC onto extraocular motoneurons. Both slow and fast evoked eye movements are similarly affected by the initial position of the eyes, despite their dissimilar metrics, kinematics, and anatomic substrates. We tested the hypothesis that the position sensitivity of evoked saccades is due to the superposition of largely position-invariant saccades and position-dependent slow drifts. We show that such a mechanism can account for the fact that the position sensitivity of evoked saccades increases together with the size of their characteristic vector. Consistent with it, the position sensitivity of saccades drops considerably when the contribution of slow drifts is minimal as, for example, when there is no overlap between evoked saccades and short-duration trains of high-frequency stimuli.


Sign in / Sign up

Export Citation Format

Share Document