Uterine Fibroids: Hiding in Plain Sight

Physiology ◽  
2022 ◽  
Vol 37 (1) ◽  
pp. 16-27
Author(s):  
Elizabeth A. Stewart ◽  
Romana A. Nowak

Uterine fibroids (leiomyomas) are present in >75% of women and can cause serious morbidity. They are by far the leading cause of hysterectomy. Fibroids are a complex mixture of cells that include fibroblasts and smooth muscle cells. Rich in extracellular matrix, they typically arise through somatic mutations, most commonly MED12. Their lack of growth inhibition and their ability to have facets of malignancy yet be histologically and biologically benign provide opportunities to explore basic processes. To date, the mechanisms responsible for growth and development of leiomyomas are an enigma. This review provides an overview of current understanding and future directions for clinical and basic research of fibroids.

2021 ◽  
Author(s):  
Ryo Maekawa ◽  
Shun Sato ◽  
Tetsuro Tamehisa ◽  
Takahiro Sakai ◽  
Takuya Kajimura ◽  
...  

Abstract Background: Somatic mutations in Mediator complex subunit 12 (MED12m) have been reported as a biomarker of uterine fibroids (UFs). However, the role of MED12m is still unclear in the pathogenesis of UFs. Therefore, we investigated the differences in DNA methylome, transcriptome, and histological features between MED12m-positive and -negative UFs. Methods: DNA methylomes and transcriptomes were obtained from MED12m-positive and -negative UFs and myometrium, and hierarchically clustered. Differentially expressed genes in comparison with the myometrium and co-expressed genes detected by weighted gene co-expression network analysis were subjected to gene ontology enrichment analyses. The amounts of collagen fibers and the number of blood vessels and smooth muscle cells were histologically evaluated. Results: Hierarchical clustering based on DNA methylation clearly separated the myometrium, MED12m-positive, and MED12m-negative UFs. MED12m-positive UFs had the increased activities of extracellular matrix formation, whereas MED12m-negative UFs had the increased angiogenic activities and smooth muscle cell proliferation. Conclusion: The MED12m-positive and -negative UFs had different DNA methylation, gene expression, and histological features. The MED12m-positive UFs form the tumor with a rich extracellular matrix and poor blood vessels and smooth muscle cells compared to the MED12m-negative UFs, suggesting MED12 mutations affect the tissue composition of UFs.


Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Author(s):  
Daniel Andrés Osório ◽  
Silvio Roberto Consonni ◽  
Aline Mara dos Santos ◽  
Hernandes F. Carvalho

1998 ◽  
Vol 35 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Patricia Sansilvestri-Morel ◽  
Isabelle Nonotte ◽  
Marie-Pierre Fournet-Bourguignon ◽  
Alain Rupin ◽  
Jean-Noël Fabiani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document