dna methylome
Recently Published Documents


TOTAL DOCUMENTS

363
(FIVE YEARS 49)

H-INDEX

42
(FIVE YEARS 0)

2022 ◽  
Vol 12 (1) ◽  
pp. 12-23
Author(s):  
Ana Cristina Márquez-Sánchez ◽  
Lino Sánchez-Segura ◽  
Gertrud Lund ◽  
Silvio Zaina

Cardiovascular epigenomics is a relatively young field of research, yet it is providing novel insights into gene regulation in the atherosclerotic arterial wall. That information is already pointing to new avenues for atherosclerosis (AS) prevention and therapy. In parallel, advances in nanoparticle (NP) technology allow effective targeting of drugs and bioactive molecules to the vascular wall. The partnership of NP technology and epigenetics in AS is just beginning and promises to produce novel exciting candidate treatments. Here, we briefly discuss the most relevant recent advances in the two fields. We focus on AS and DNA methylation, as the DNA methylome of that condition is better understood in comparison with the rest of the cardiovascular disease field. In particular, we review the most recent advances in NP-based delivery systems and their use for DNA methylome modification in inflammation. We also address the promises of DNA methyltransferase inhibitors for prevention and therapy. Furthermore, we emphasize the unique challenges in designing therapies that target the cardiovascular epigenome. Lastly, we touch the issue of human exposure to industrial NPs and its impact on the epigenome as a reminder of the undesired effects that any NP-based therapy must avoid to be apt for secondary prevention of AS.



2021 ◽  
Author(s):  
Roberta Armignacco ◽  
Anne Jouinot ◽  
Lucas Bouys ◽  
Amandine Septier ◽  
Thomas Lartigue ◽  
...  

Objective: Cushing’s syndrome represents a state of excessive glucocorticoids related to glucocorticoid treatments or to endogenous hypercortisolism. Cushing’s syndrome is associated with high morbidity, with significant inter-individual variability. Likewise, adrenal insufficiency is a life-threatening condition of cortisol deprivation. Currently, hormone assays contribute to identify Cushing’s syndrome or adrenal insufficiency. However, no biomarker directly quantifies the biological glucocorticoid action. The aim of this study was to identify such markers. Design: We evaluated whole blood DNA methylome in 94 samples obtained from patients with different glucocorticoid states (Cushing’s syndrome, eucortisolism, adrenal insufficiency). We used an independent cohort of 91 samples for validation. Methods: Leukocyte DNA was obtained from whole blood samples. Methylome was determined using the Illumina methylation chip array (~850000 CpG sites). Both unsupervised (Principal Component Analysis) and supervised (Limma) methods were used to explore methylome profiles. A Lasso-penalized regression was used to select optimal discriminating features. Results: Whole blood methylation profile was able to discriminate samples by their glucocorticoid status: glucocorticoid excess was associated with DNA hypomethylation, recovering within months after Cushing’s syndrome correction. In Cushing’s syndrome, an enrichment in hypomethylated CpG sites was observed in the region of FKBP5 gene locus. A methylation predictor of glucocorticoid excess was built on a training cohort and validated on two independent cohorts. Potential CpG sites associated with the risk for specific complications, such as glucocorticoid-related hypertension or osteoporosis, were identified, needing now to be confirmed on independent cohorts. Conclusions: Whole blood DNA methylome is dynamically impacted by glucocorticoids. This biomarker could contribute to better assess glucocorticoid action beyond hormone assays.



2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Youssef Siblini ◽  
Céline Chéry ◽  
Pierre Rouyer ◽  
Jérémie Raso ◽  
Amélia Julien ◽  
...  

Abstract Background Although radiation therapy represents a core cancer treatment modality, its efficacy is hampered by radioresistance. The effect of ionizing radiations (IRs) is well known regarding their ability to induce genetic alterations; however, their impact on the epigenome landscape in cancer, notably at the CpG dinucleotide resolution, remains to be further deciphered. In addition, no evidence is available regarding the effect of IRs on the DNA methylome profile according to the methionine dependency phenotype, which represents a hallmark of metabolic adaptation in cancer. Methods We used a case–control study design with a fractionated irradiation regimen on four cancerous cell lines representative of HCC (HepG2), melanoma (MeWo and MeWo-LC1, which exhibit opposed methionine dependency phenotypes), and glioblastoma (U251). We performed high-resolution genome-wide DNA methylome profiling using the MethylationEPIC BeadChip on baseline conditions, irradiated cell lines (cumulative dose of 10 Gy), and non-irradiated counterparts. We performed epigenome-wide association studies to assess the effect of IRs and methionine-dependency-oriented analysis by carrying out epigenome-wide conditional logistic regression. We looked for epigenome signatures at the locus and single-probe (CpG dinucleotide) levels and through enrichment analyses of gene ontologies (GO). The EpiMet project was registered under the ID#AAP-BMS_003_211. Results EWASs revealed shared GO annotation pathways associated with increased methylation signatures for several biological processes in response to IRs, including blood circulation, plasma membrane-bounded cell projection organization, cell projection organization, multicellular organismal process, developmental process, and animal organ morphogenesis. Epigenome-wide conditional logistic regression analysis on the methionine dependency phenotype highlighted several epigenome signatures related to cell cycle and division and responses to IR and ultraviolet light. Conclusions IRs generated a variation in the methylation level of a high number of CpG probes with shared biological pathways, including those associated with cell cycle and division, responses to IRs, sustained angiogenesis, tissue invasion, and metastasis. These results provide insight on shared adaptive mechanisms of the epigenome in cancerous cell lines in response to IR. Future experiments should focus on the tryptic association between IRs, the initiation of a radioresistance phenotype, and their interaction with methionine dependency as a hallmark of metabolic adaptation in cancer. Graphical abstract





2021 ◽  
Author(s):  
Jeffrey Bourgeois ◽  
Caroline E Anderson ◽  
Liuyang Wang ◽  
Jennifer L Modliszewski ◽  
Wei Chen ◽  
...  

Despite being in a golden age of prokaryotic epigenomics, little work has systematically examined the plasticity and functional impacts of the bacterial DNA methylome. Here, we leveraged SMRT sequencing to examine the m6A DNA methylome of two Salmonella enterica ser. Typhimurium strains: 14028s and a ∆metJ mutant with derepressed methionine metabolism, grown in Luria Broth or a media that simulates the intracellular environment. We find that the methylome is remarkably static-over 95% of adenosine bases retain their methylation status across conditions. Integration of methylation with transcriptomic data revealed no correlation between methylation and gene expression. Further, examining the transcriptome in ∆yhdJ bacteria, lacking the m6A methylase with the most dynamic methylation pattern in our dataset, revealed little evidence of YhdJ-mediated gene regulation. Curiously, despite G(m6A)TC motifs being particularly resistant to change across conditions, we found that the Dam methylase is required for the ∆metJ motility defect. This ∆;metJ motility defect may be partially driven by hypermethylation of the chemotaxis gene tsr. Together, these data redefine the S. Typhimurium epigenome as a highly stable system that has rare, but important, roles in transcriptional regulation. Incorporating these lessons into future studies will be critical as we progress through the epigenomic era.



2021 ◽  
Author(s):  
Ryo Maekawa ◽  
Shun Sato ◽  
Tetsuro Tamehisa ◽  
Takahiro Sakai ◽  
Takuya Kajimura ◽  
...  

Abstract Background: Somatic mutations in Mediator complex subunit 12 (MED12m) have been reported as a biomarker of uterine fibroids (UFs). However, the role of MED12m is still unclear in the pathogenesis of UFs. Therefore, we investigated the differences in DNA methylome, transcriptome, and histological features between MED12m-positive and -negative UFs. Methods: DNA methylomes and transcriptomes were obtained from MED12m-positive and -negative UFs and myometrium, and hierarchically clustered. Differentially expressed genes in comparison with the myometrium and co-expressed genes detected by weighted gene co-expression network analysis were subjected to gene ontology enrichment analyses. The amounts of collagen fibers and the number of blood vessels and smooth muscle cells were histologically evaluated. Results: Hierarchical clustering based on DNA methylation clearly separated the myometrium, MED12m-positive, and MED12m-negative UFs. MED12m-positive UFs had the increased activities of extracellular matrix formation, whereas MED12m-negative UFs had the increased angiogenic activities and smooth muscle cell proliferation. Conclusion: The MED12m-positive and -negative UFs had different DNA methylation, gene expression, and histological features. The MED12m-positive UFs form the tumor with a rich extracellular matrix and poor blood vessels and smooth muscle cells compared to the MED12m-negative UFs, suggesting MED12 mutations affect the tissue composition of UFs.



Genomics ◽  
2021 ◽  
Vol 113 (6) ◽  
pp. 3907-3918
Author(s):  
Shuxia Li ◽  
Weijing Wang ◽  
Dongfeng Zhang ◽  
Weilong Li ◽  
Jesper Lund ◽  
...  


2021 ◽  
Vol 22 (19) ◽  
pp. 10729
Author(s):  
Andy Chun Hang Chen ◽  
Wen Huang ◽  
Sze Wan Fong ◽  
Chris Chan ◽  
Kai Chuen Lee ◽  
...  

The prevalence of type 2 diabetes (T2D) is rapidly increasing across the globe. Fetal exposure to maternal diabetes was correlated with higher prevalence of impaired glucose tolerance and T2D later in life. Previous studies showed aberrant DNA methylation patterns in pancreas of T2D patients. However, the underlying mechanisms remained largely unknown. We utilized human embryonic stem cells (hESC) as the in vitro model for studying the effects of hyperglycemia on DNA methylome and early pancreatic differentiation. Culture in hyperglycemic conditions disturbed the pancreatic lineage potential of hESC, leading to the downregulation of expression of pancreatic markers PDX1, NKX6−1 and NKX6−2 after in vitro differentiation. Genome-wide DNA methylome profiling revealed over 2000 differentially methylated CpG sites in hESC cultured in hyperglycemic condition when compared with those in control glucose condition. Gene ontology analysis also revealed that the hypermethylated genes were enriched in cell fate commitment. Among them, NKX6−2 was validated and its hypermethylation status was maintained upon differentiation into pancreatic progenitor cells. We also established mouse ESC lines at both physiological glucose level (PG-mESC) and conventional hyperglycemia glucose level (HG-mESC). Concordantly, DNA methylome analysis revealed the enrichment of hypermethylated genes related to cell differentiation in HG-mESC, including Nkx6−1. Our results suggested that hyperglycemia dysregulated the epigenome at early fetal development, possibly leading to impaired pancreatic development.



Sign in / Sign up

Export Citation Format

Share Document