Large-scale reprogramming of cranial neural crest gene expression by retinoic acid exposure

2004 ◽  
Vol 19 (2) ◽  
pp. 184-197 ◽  
Author(s):  
Sarah S. Williams ◽  
John P. Mear ◽  
Hung-Chi Liang ◽  
S. Steven Potter ◽  
Bruce J. Aronow ◽  
...  

Although retinoic acid (RA), the active form of vitamin A, is required for normal embryonic growth and development, it is also a powerful teratogen. Infants born to mothers exposed to retinoids during pregnancy have a 25-fold increased risk for malformations, nearly exclusively of cranial neural crest-derived tissues. To characterize neural crest cell responses to RA, we exposed murine crest cultures to teratogenic levels of RA and subjected their RNA to microarray-based gene expression profile analysis using Affymetrix MG-U74Av2 GeneChips. RNAs were isolated from independent cultures treated with 10−6 M RA for 6, 12, 24, or 48 h. Statistical analyses of gene expression profile data facilitated identification of the 205 top-ranked differentially regulated genes whose expression was reproducibly changed by RA over time. Cluster analyses of these genes across the independently treated sample series revealed distinctive kinetic patterns of altered gene expression. The largest group was transiently affected within the first 6 h of exposure, representing early responding genes. Group 2 showed sustained induction by RA over all times, whereas group 3 was characterized by the suppression of a time-dependent expression increase normally seen in untreated cells. Additional patterns demonstrated time-dependent increased or decreased expression among genes not normally regulated to a significant extent. Gene function analysis revealed that more than one-third of all RA-regulated genes were associated with developmental regulation, including both canonical and noncanonical Wnt signaling pathways. Multiple genes associated with cell adhesion and cell cycle regulation, recognized targets for the biological effects of RA, were also affected. Taken together, these results support the hypothesis that the teratogenic effects of RA derive from reprogramming gene expression of a host of genes, which play critical roles during embryonic development regulating pathways that determine subsequent differentiation of cranial neural crest cells.

Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1097-1118 ◽  
Author(s):  
Xiaoping Luo ◽  
Li Ding ◽  
Jingxia Xu ◽  
Nasser Chegini

Altered expression of the TGF-β system is recognized to play a central role in various fibrotic disorders, including leiomyoma. In this study we performed microarray analysis to characterize the gene expression profile of leiomyoma and matched myometrial smooth muscle cells (LSMC and MSMC, respectively) in response to the time-dependent action of TGF-β and, after pretreatment with TGF-β type II receptor (TGF-βRII) antisense oligomer-blocking/reducing TGF-β autocrine/paracrine actions. Unsupervised and supervised assessments of the gene expression values with a false discovery rate selected at P ≤ 0.001 identified 310 genes as differentially expressed and regulated in LSMC and MSMC in a cell- and time-dependent manner by TGF-β. Pretreatment with TGF-βRII antisense resulted in changes in the expression of many of the 310 genes regulated by TGF-β, with 54 genes displaying a response to TGF-β treatment. Comparative analysis of the gene expression profile in TGF-βRII antisense- and GnRH analog-treated cells indicated that these treatments target the expression of 222 genes in a cell-specific manner. Gene ontology assigned these genes functions as cell cycle regulators, transcription factors, signal transducers, tissue turnover, and apoptosis. We validated the expression and TGF-β time-dependent regulation of IL-11, TGF-β-induced factor, TGF-β-inducible early gene response, early growth response 3, CITED2 (cAMP response element binding protein-binding protein/p300-interacting transactivator with ED-rich tail), Nur77, Runx1, Runx2, p27, p57, growth arrest-specific 1, and G protein-coupled receptor kinase 5 in LSMC and MSMC using real-time PCR. Together, the results provide the first comprehensive assessment of the LSMC and MSMC molecular environment targeted by autocrine/paracrine action of TGF-β, highlighting potential involvement of specific genes whose products may influence the outcome of leiomyoma growth and fibrotic characteristics by regulating inflammatory response, cell growth, apoptosis, and tissue remodeling.


2014 ◽  
Vol 446 (2) ◽  
pp. 481-486 ◽  
Author(s):  
Masahiro Takahashi ◽  
Tetsuo Suzawa ◽  
Atsushi Yamada ◽  
Tetsutaro Yamaguchi ◽  
Kenji Mishima ◽  
...  

2014 ◽  
Vol 53 (1) ◽  
pp. 423-435 ◽  
Author(s):  
Matheus Augusto de Bittencourt Pasquali ◽  
Vitor Miranda de Ramos ◽  
Ricardo D′Oliveira Albanus ◽  
Alice Kunzler ◽  
Luis Henrinque Trentin de Souza ◽  
...  

2009 ◽  
Author(s):  
Rachel Yehuda ◽  
Julia Golier ◽  
Sandro Galea ◽  
Marcus Ising ◽  
Florian Holsborer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document