scholarly journals The Renal Physiology of Pendrin-Positive Intercalated Cells

2020 ◽  
Vol 100 (3) ◽  
pp. 1119-1147 ◽  
Author(s):  
Susan M. Wall ◽  
Jill W. Verlander ◽  
Cesar A. Romero

Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl− absorption and HCO3− secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl−/HCO3− exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3− secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl− absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl− balance, pendrin affects the balance of other ions, such as K+ and I−. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.

2013 ◽  
Vol 305 (4) ◽  
pp. F427-F438 ◽  
Author(s):  
Susan M. Wall ◽  
Alan M. Weinstein

Renal intercalated cells mediate the secretion or absorption of Cl− and OH−/H+ equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl− absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl− transporter(s) are targeted by these diuretics is debated. While epithelial Na+ channel (ENaC) does not transport Cl−, it modulates Cl− transport probably by generating a lumen-negative voltage, which drives Cl− flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl− secretion via a type A intercalated cells. During ENaC blockade, Cl− is taken up across the basolateral membrane through the Na+-K+−2Cl− cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl− channel or an electrogenic exchanger). The mechanism of this apical Cl− secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl− absorption mediated by a Na+-dependent Cl−/HCO3− exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl− absorption varies between studies and probably depends on the treatment model employed. Cl− absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na+-independent Cl−/HCO3− exchanger pendrin. In the absence of pendrin [ Slc26a4 (−/−) or pendrin null mice], aldosterone-stimulated Cl− absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO3−. This review summarizes mechanisms of Cl− transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.


2016 ◽  
Vol 310 (3) ◽  
pp. F193-F203 ◽  
Author(s):  
Susan M. Wall

Pendrin is a Na+-independent Cl−/HCO3− exchanger found in the apical regions of type B and non-A, non-B intercalated cells within the aldosterone-sensitive region of the nephron, i.e., the distal convoluted tubule (DCT), the connecting tubule (CNT), and the cortical collecting duct (CCD). Type B intercalated cells mediate Cl− absorption and HCO3− secretion primarily through pendrin-mediated Cl−/HCO3− exchange. This exchanger is upregulated with angiotensin II administration and in models of metabolic alkalosis, such as following administration of aldosterone or NaHCO3. In the absence of pendrin-mediated HCO3− secretion, an enhanced alkalosis is observed following aldosterone or NaHCO3 administration. However, probably of more significance is the role of pendrin in the pressor response to aldosterone. Pendrin mediates Cl− absorption and modulates aldosterone-induced Na+ absorption mediated by the epithelial Na channel (ENaC). Pendrin changes ENaC activity by changing both channel open probability ( Po) and surface density ( N), at least partly by altering luminal HCO3− and ATP concentration. Thus aldosterone and angiotensin II stimulate pendrin expression and function, which stimulates ENaC activity, thereby contributing to the pressor response of these hormones. However, pendrin may modulate blood pressure partly through its extrarenal effects. For example, pendrin is expressed in the adrenal medulla, where it modulates catecholamine release. The increase in catecholamine release observed with pendrin gene ablation likely contributes to the increment in vascular contractile force observed in the pendrin null mouse. This review summarizes the signaling mechanisms that regulate pendrin abundance and function as well as the contribution of pendrin to distal nephron function.


2010 ◽  
Vol 298 (1) ◽  
pp. F12-F21 ◽  
Author(s):  
Michelle L. Gumz ◽  
I. Jeanette Lynch ◽  
Megan M. Greenlee ◽  
Brian D. Cain ◽  
Charles S. Wingo

The H+-K+-ATPases are ion pumps that use the energy of ATP hydrolysis to transport protons (H+) in exchange for potassium ions (K+). These enzymes consist of a catalytic α-subunit and a regulatory β-subunit. There are two catalytic subunits present in the kidney, the gastric or HKα1isoform and the colonic or HKα2isoform. In this review we discuss new information on the physiological function, regulation, and structure of the renal H+-K+-ATPases. Evaluation of enzymatic functions along the nephron and collecting duct and studies in HKα1and HKα2knockout mice suggest that the H+-K+-ATPases may function to transport ions other than protons and potassium. These reports and recent studies in mice lacking both HKα1and HKα2suggest important roles for the renal H+-K+-ATPases in acid/base balance as well as potassium and sodium homeostasis. Molecular modeling studies based on the crystal structure of a related enzyme have made it possible to evaluate the structures of HKα1and HKα2and provide a means to study the specific cation transport properties of H+-K+-ATPases. Studies to characterize the cation specificity of these enzymes under different physiological conditions are necessary to fully understand the role of the H+-K+ATPases in renal physiology.


Author(s):  
Gertrude Arthur ◽  
Jeffrey L. Osborn ◽  
Frederique B. Yiannikouris

Prorenin receptor (PRR), a 350-amino acid receptor initially thought of as a receptor for the binding of renin and prorenin has been shown to be multifunctional. In addition to its role in the renin angiotensin system (RAS), PRR also transduces several intracellular signaling molecules and is a component of the vacuolar H+-ATPase that participates in autophagy. PRR is found in the kidney and particularly in great abundance in the cortical collecting duct. In the kidney, PRR participates in water and salt balance, acid-base balance, autophagy and plays a role in development and progression of hypertension, diabetic retinopathy, and kidney fibrosis. This review highlights the role of PRR in the development and function of the kidney namely the macula densa, podocyte, proximal and distal convoluted tubule and the principal cells of the collecting duct and focuses on PRR function in body fluid volume homeostasis, blood pressure regulation and acid-base balance. This review also explores new advances in the molecular mechanism involving PRR in normal renal health and pathophysiological states.


1998 ◽  
Vol 274 (3) ◽  
pp. F596-F601 ◽  
Author(s):  
Géza Fejes-Tóth ◽  
Erzsébet Rusvai ◽  
Emily S. Cleaveland ◽  
Anikó Náray-Fejes-Tóth

AE2 mRNA and protein is expressed in several nephron segments, one of which is the cortical collecting duct (CCD). However, the distribution of AE2 among the different cell types of the CCD and the function of AE2 in the kidney are not known. The purpose of this study was to determine the distribution of AE2 mRNA among the three CCD cell types and to examine the effects of changes in acid/base balance on its expression. Following NH4Cl (acid) or NaHCO3 (base) loading of rabbits for ∼18 h, CCD cells were isolated by immunodissection. AE2 mRNA levels were determined by RT-PCR and were normalized for β-actin levels. We found that CCD cells express high levels of AE2 mRNA (∼500 copies/cell). AE2 mRNA levels were significantly higher in CCD cells originating from base-loaded than acid-loaded rabbits, with an average increase of 3.7 ± 1.07-fold. The effect of pH on AE2 mRNA levels was also tested directly using primary cultures of CCD cells. CCD cells incubated in acidic media expressed significantly lower levels of AE2 mRNA than those in normal or alkaline media. Experiments with isolated principal cells, α-intercalated cells, and β-intercalated cells (separated by fluorescence-activated cell sorting) demonstrated that AE2 mRNA levels are comparable in the three collecting duct cell subtypes and are similarly regulated by changes in acid/base balance. Based on these results, we conclude that adaptation to changes in extracellular H+ concentration is accompanied by opposite changes in AE2 mRNA expression. The observations that AE2 mRNA is not expressed in a cell-type-specific manner and that changes in acid/base balance have similar effects on each CCD cell subtype suggest that AE2 might serve a housekeeping function rather than being the apical anion exchanger of β-intercalated cells.


2012 ◽  
Vol 302 (10) ◽  
pp. C1421-C1433 ◽  
Author(s):  
Dennis Brown ◽  
Richard Bouley ◽  
Teodor G. Pǎunescu ◽  
Sylvie Breton ◽  
Hua A. J. Lu

Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these “professional” proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.


2013 ◽  
Vol 305 (2) ◽  
pp. R92-R94 ◽  
Author(s):  
Nirupama Ramkumar ◽  
Donald E. Kohan

Numerous studies indicate that renin is synthesized and secreted by the collecting duct (CD). CD-derived renin may act directly on intercalated and/or principal cells through direct interaction with prorenin receptors and/or through cleavage of proximal tubule-derived angiotensinogen to ultimately produce angiotensin II and activate AT1 receptors. Preliminary studies suggest that the net effect of CD renin would be to increase distal nephron salt reabsorption and increase blood pressure. CD renin production is markedly increased in diabetes and angiotensin II-induced hypertension, suggesting that this system may exert pathophysiological effects. In this brief review, we summarize the current literature on synthesis and regulation of CD renin and consider potential mechanisms by which it regulates blood pressure.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mayank Chaudhary

Background:: Renin angiotensin system (RAS) is a critical pathway involved in blood pressure regulation. Octapeptide, angiotensin II (Ang aII), is biologically active compound of RAS pathway which mediates its action by binding to either angiotensin II type 1 receptor (AT1R) or angiotensin II type 2 receptor (AT2R). Binding of Ang II to AT1R facilitates blood pressure regulation whereas AT2R is primarily involved in wound healing and tissue remodelling. Objective:: Recent studies have highlighted additional role of AT2R to counter balance detrimental effects of AT1R. Activation of angiotensin II type 2 receptor using AT2R agonist has shown effect on natriuresis and release of nitric oxide. Additionally, AT2R activation has been found to inhibit angiotensin converting enzyme (ACE) and enhance angiotensin receptor blocker (ARB) activity. These findings highlight the potential of AT2R as novel therapeutic target against hypertension. Conclusion:: The potential role of AT2R highlights the importance of exploring additional mechanisms that might be crucial for AT2R expression. Epigenetic mechanisms including DNA methylation and histone modification have been explored vastly with relation to cancer but role of such mechanisms on expression of AT2R has recently gained interest.


Sign in / Sign up

Export Citation Format

Share Document