Synthesis and X-ray powder diffraction data of transition metal derivatives of maleic acid. I. M2+(C4H3O4−)2⋅4H2O (M2+=Mn, Fe, Co, Ni, and Zn)

2002 ◽  
Vol 17 (2) ◽  
pp. 139-143 ◽  
Author(s):  
A. Briceño ◽  
T. González ◽  
G. Díaz de Delgado ◽  
R. Guevara ◽  
J. M. Delgado

Five transition metal derivatives of maleic acid with general formula, M2+(C4H3O4−)2⋅4H2O (M2+=Mn, Fe, Co, Ni, and Zn) were prepared by slow evaporation of the aqueous solution at room temperature. Their X-ray powder diffraction patterns were recorded and evaluated. These materials are isostructural and crystallize in a triclinic unit cell. The volume of the cells vary linearly between that of the Ni complex [V=314.65(7) Å3: a=5.1769(8) Å, b=7.317(1) Å, c=9.140(2) Å, α=108.42(2)°, β=104.61(1)°, γ=92.87(1)°] and the volume of the Mn-derivative [V=330.30(8) Å3: a=5.322(1) Å, b=7.375(1) Å, c=9.752(2) Å, α=115.48(2)°, β=106.64(2)°, γ=86.63(2)°].

1997 ◽  
Vol 12 (3) ◽  
pp. 134-135
Author(s):  
Liangqin Nong ◽  
Lingmin Zeng ◽  
Jianmin Hao

The compound DyNiSn has been studied by X-ray powder diffraction. The X-ray diffraction patterns for this compound at room temperature are reported. DyNiSn is orthorhombic with lattice parameters a=7.1018(1) Å, b=7.6599(2) Å, c=4.4461(2) Å, space group Pna21 and 4 formula units of DyNiSn in unit cell. The Smith and Snyder Figure-of-Merit F30 for this powder pattern is 26.7(0.0178,63).


1999 ◽  
Vol 14 (4) ◽  
pp. 280-283 ◽  
Author(s):  
A. Rafalska-Łasocha ◽  
W. Łasocha ◽  
M. Michalec

The X-ray powder diffraction patterns of anilinium trimolybdate tetrahydrate, (C6H5NH3)2Mo3O10·4H2O, and anilinium trimolybdate dihyhydrate, (C6H5NH3)2Mo3O10·2H2O, have been measured in room temperature. The unit cell parameters were refined to a=11.0670(7) Å, b=7.6116(8) Å, c=25.554(3) Å, space group Pnma(62) and a=17.560(2) Å, b=7.5621(6) Å, c=16.284(2) Å, β=108.54(1)°, space group P21(4) or P21/m(11) for orthorhombic anilinium trimolybdate tetrahydrate and monoclinic anilinium trimolybdate dihydrate, respectively.


1998 ◽  
Vol 51 (8) ◽  
pp. 707 ◽  
Author(s):  
Jack M. Harrowfield ◽  
Raj Pal Sharma ◽  
Todd M. Shand ◽  
Brian W. Skelton ◽  
Allan H. White

Room-temperature, single-crystal X-ray studies are recorded for the variously hydrated Group 1 metal derivatives of 2-nitrophenol (2-npH = C6H5NO3). A provisional determination is reported for Li(2-np).½H2O, set as monoclinic, P21/c, a 3·535(3), b 15·06(1), c 24·42(2) Å, β 91·7(1)°, Z = 8, conventional R on F currently 0·18 for No 875 ‘observed’ (I > 3σ(I)) reflections. Na(2-np).H2O is monoclinic, C2/c, a 34 ·23(2), b 3·624(4), c 35·48(2) Å, β 91·24(4)°, Z = 24, R 0·060 for No 1371. Rb(2-np).½ H2O is monoclinic, C2/c (isomorphous with the previously determined potassium analogue), a 25·269(9), b 5·381(5), c 12·010(3) Å, β 105·35(3)°, Z = 8, R 0·046 for No 1380. Cs(2-np).½H2O is monoclinic, P21/n, a 7·648(3), b 26·19(1), c 8·713(6) Å, β 111·75(2)°, Z = 8, R 0·061 for No 2347. All compounds except the lithium derivative are two-dimensional polymeric sheets in which the aromatic rings project to either side of a core of metal atoms coordinated by a web of 2-nitrophenoxide oxygen atoms in various bridging functionalities. The lithium compound is a novel ‘stair’ polymer with two crystallographically independent lithium atoms at successive independent Li–O crossbars, the oxygen atoms of which are phenoxide-Oof each of the two independent ligands. The lithium atoms are alternately four- and five-coordinate, the fourth coordination site of the first being occupied by the water molecule oxygen atom, while the fourth and fifth sites of the second are occupied by the cis-2-nitro oxygen atoms of the two ligands


1993 ◽  
Vol 8 (3) ◽  
pp. 191-193 ◽  
Author(s):  
C. Caranoni ◽  
P. Lampin ◽  
C. Boulesteix

Substituting cations in materials with the formula Pb2B′B″O6 is more or less ordered on the B sites. High-quality single crystals of Pb2ScTaO6 (PST) and Pb(Sc0.5Nb0.5)O3 (PSN) were prepared from two thermal cycles. A stoichiometric mixture of the constituent oxides was prefired at up to 1000 °C, and then crystals were grown from a PbO–B2O3–PbF2 flux mixture, starting at a temperature of 1100 °C for PSN and 1200 °C for PST. At room temperature, X-ray examination showed that PSN had a perovskite structure with a cubic unit-cell and a refined parameter a = 4.080(1 ) Å, space group Pm3m and Z = 1, whereas PST formed a well-ordered superlattice with a = 8.136(1) Å, Z = 4 and space group Fm3m. In each case a fully indexed powder pattern is presented. The degree of order is estimated to be close to 80% for PST and less than 10% for PSN.


2004 ◽  
Vol 19 (4) ◽  
pp. 378-384
Author(s):  
A. Rafalska-Lasocha ◽  
M. Grzywa ◽  
B. Włodarczyk-Gajda ◽  
W. Lasocha

The X-ray diffraction patterns of two organic acids 1-naphthalenesulfonic acid dihydrate and 2-naphthalenesulfonic acid hydrate were measured at room temperature. Complexes of these acids with 1,8-bis(dimethylamino)naphthalene (DMAN) were synthesized, purified and investigated by means of X-ray powder diffraction. 1-Naphthalenesulfonic acid dihydrate as well as its complex with 1,8-bis(dimethylamino)naphthalene crystallize in the monoclinic system with unit cell parameters refined to a=0.91531(8) nm, b=0.7919(1) nm, c=0.8184(1) nm, β=101.618(9)° space group P21/m (11) and a=1.7781(4) nm, b=2.0122(4) nm, c=1.2337(2) nm, β=96.54(3)°, space group C2/m (12), respectively. 2-Naphthalenesulfonic acid hydrate crystallizes in the orthorhombic system with a=2.2749(3) nm, b=0.7745(1) nm, c=0.591 36(9) nm, space group Pnma, whereas its complex with 1,8-bis(dimethylamino)naphthalene crystallizes in the triclinic system a=1.3969(6) nm, b=1.4292(5) nm, c=1.1741(6) nm, α=90.93(3)°, β=98.14(3)°, γ=113.93(3)°, space group P-1 (2).


Clay Minerals ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 45-52 ◽  
Author(s):  
E. Murad ◽  
U. Wagner

AbstractThe phase changes that took place upon heating an Fe-rich illite (OECD #5) to 1300°C in an oxidizing atmosphere were studied by a variety of mineralogical techniques. Infrared spectra, showing the stepwise dehydroxylation of the illite, showed good agreement with variations in sample colour and Mössbauer spectra. Dehydroxylation did not lead to noticeable variations in X-ray powder diffraction patterns until the structural breakdown of illite and formation of new phases at about 900°C Mössbauer spectroscopy proved to be very sensitive to all changes induced by heating, showing the disappearance of Fe2+ at 250°C, the gradual dehydroxylation between about 350 and 900°C, and characteristic features of the products formed at higher temperatures, e.g. the formation of hematite as the illite structure breaks down and the subsequent disappearance of hematite due to the incorporation of Fe in glass above 1200°C. The formation of hematite in clusters large enough to order magnetically at room temperature was first observed in the sample heated to 900°C, whereas at 4.2 K, significant proportions of a magnetically ordered phase could already be identified in the sample heated to 650°C.


1967 ◽  
Vol 21 (4) ◽  
pp. 225-231 ◽  
Author(s):  
B. C. Flann ◽  
J. A. R. Cloutier

The dixanthyl derivatives of 21 clinically important barbituric acids have been prepared. Melting points, infrared spectra, and x-ray powder-diffraction patterns of the purified compounds are presented. Infrared evidence is used to discuss the position of the linkage between the xanthyl and barbiturate portions of the derivatives. The experimental data should prove of particular value for the microchemical identification of barbiturates.


Sign in / Sign up

Export Citation Format

Share Document