Flexible filamentous virus structures from fiber diffraction

2008 ◽  
Vol 23 (2) ◽  
pp. 113-117 ◽  
Author(s):  
Gerald Stubbs ◽  
Amy Kendall ◽  
Michele McDonald ◽  
Wen Bian ◽  
Timothy Bowles ◽  
...  

Fiber diffraction data have been obtained from Narcissus mosaic virus, a potexvirus from the family Flexiviridae, and soybean mosaic virus (SMV), a potyvirus from the family Potyviridae. Analysis of the data in conjunction with cryo-electron microscopy data allowed us to determine the symmetry of the viruses and to make reconstructions of SMV at 19 Å resolution and of another potexvirus, papaya mosaic virus, at 18 Å resolution. These data include the first well-ordered data ever obtained for the potyviruses and the best-ordered data from the potexviruses, and offer the promise of eventual high resolution structure determinations.

Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 442-446 ◽  
Author(s):  
L. Gao ◽  
R. Zhai ◽  
Y. K. Zhong ◽  
A. Karthikeyan ◽  
R. Ren ◽  
...  

Soybean mosaic virus (SMV), belonging to the genus Potyvirus of the family Potyviridae, has a relatively narrow host range almost exclusively confined to leguminous hosts. While disease management through genetic transformation can be an effective approach, soybean remains recalcitrant to routine genetic transformation. In this context, it is important to identify new hosts for SMV that can be used to develop effective transgenic resistance strategies. Transformation in Nicotiana benthamiana is simple and highly efficient; hence, here we demonstrate the infectivity of SMV strain SC7 in N. benthamiana plants. To identify an SMV strain infectious in N. benthamiana, we mechanically inoculated N. benthamiana plants with 37 isolates from 21 (SC1 to SC21) SMV strains. Plants inoculated with isolates of strain SC7 produced mosaic symptoms on leaves. However, N. benthamiana plants inoculated with the 20 other SMV strains showed no visible symptoms. Furthermore, soybean cv. Nannong 1138-2 inoculated with sap prepared from symptomatic N. benthamiana leaves showed typical SMV mosaic symptoms 2 weeks after inoculation. In addition, SMV was detected in symptomatic N. benthamiana and soybean leaves by RT-PCR, DAS-ELISA, and further identified by sequencing. Together, the results indicate that N. benthamiana plants could support multiplication of SMV strain SC7. The findings of this study would be useful for the investigation of SMV resistance using the model plant N. benthamiana.


2020 ◽  
Vol 21 (1) ◽  
pp. 6-9
Author(s):  
Wuye Ria Andayanie

Soybean superior varieties with high yields and are resistant to abiotic stress have been largely released, although some varieties grown in the field are not resistant to SMV. In addition, the opportunity to obtain lines of hope as prospective varieties with high yield and resistance to SMV is very small. The method for evaluating soybean germplasm is based on serological observations of 98 accessions of leaf samples from SMV inoculation with T isolate. The evaluation results of 98 accessions based on visual observations showed 31 genotypes reacting very resistant or healthy to mild resistant category to SMV T isolate  with a percentage of symptom severity of 0 −30 %. Among 31 genotypes there are 2 genotypes (PI 200485; M8Grb 44; Mlg 3288) with the category of visually very resistant and resistant, respectively and  Mlg 3288  with the category of mild resistant.  They have a good agronomic appearance with a weight of 100 seeds (˃10 g) and react negatively with polyclonal antibodies to SMV, except Mlg 3288 reaction is not consistent, despite the weight of 100 seeds (˃ 10 g). Leaf samples from 98 accessions revealed various symptoms of SMV infection in the field. This diversity of symptoms is caused by susceptibility to accession, when infection occurs, and environmental factors. Keywords—: soybean; genotipe; Soybean mosaic virus (SMV); disease severity; polyclonal  antibody


2010 ◽  
Vol 36 (4) ◽  
pp. 549-554
Author(s):  
Rong-Xia GUAN ◽  
Yu-Bo CHEN ◽  
Hong-Liang FANG ◽  
Shuo LIU ◽  
Wei-Li TENG ◽  
...  

Crop Science ◽  
1989 ◽  
Vol 29 (6) ◽  
pp. 1439-1441 ◽  
Author(s):  
G. R. Buss ◽  
C. W. Roane ◽  
S. A. Tolin ◽  
P. Chen

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hexiang Luan ◽  
Wenlin Liao ◽  
Yingpei Song ◽  
Haopeng Niu ◽  
Ting Hu ◽  
...  

2013 ◽  
Vol 103 (9) ◽  
pp. 941-948 ◽  
Author(s):  
Sushma Jossey ◽  
Houston A. Hobbs ◽  
Leslie L. Domier

Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean (Glycine max). The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing mutants in and chimeric recombinants between SMV 413 (efficiently aphid and seed transmitted) and an isolate of SMV G2 (not aphid or seed transmitted). As previously reported, the DAG amino acid sequence motif near the amino terminus of the coat protein (CP) was the major determinant in differences in aphid transmissibility of the two SMV isolates, and helper component proteinase (HC-Pro) played a secondary role. Seed transmission of SMV was influenced by P1, HC-Pro, and CP. Replacement of the P1 coding region of SMV 413 with that of SMV G2 significantly enhanced seed transmissibility of SMV 413. Substitution in SMV 413 of the two amino acids that varied in the CPs of the two isolates with those from SMV G2, G to D in the DAG motif and Q to P near the carboxyl terminus, significantly reduced seed transmission. The Q-to-P substitution in SMV 413 also abolished virus-induced seed-coat mottling in plant introduction 68671. This is the first report associating P1, CP, and the DAG motif with seed transmission of a potyvirus and suggests that HC-Pro interactions with CP are important for multiple functions in the virus infection cycle.


2021 ◽  
Author(s):  
Bowen Li ◽  
Adhimoolam Karthikeyan ◽  
Liqun Wang ◽  
Jinlong Yin ◽  
Tongtong Jin ◽  
...  

Abstract Background: Soybean mosaic virus (SMV) is the most devastating pathogen of soybean. MicroRNAs (miRNAs) are a class of non-coding RNAs (21-24 nucleotides) and play important roles in regulating defense responses against pathogens. However, miRNA's response to SMV in soybean is not as well documented. Result: In this study, we analyzed 18 miRNA libraries, including three biological replicates from two soybean lines (Resistant and susceptible lines to SMV strain SC3 selected from the near-isogenic lines of Qihuang No. 1× Nannong1138-2) after virus infection at three different time intervals (0 dpi, 7 dpi, and 14 dpi). A total of 1,092 miRNAs, including 608 known miRNAs and 484 novel miRNAs were detected. Differential expression analyses identified the miRNAs responded during soybean-SMV interaction. Then, miRNAs potential target genes were predicted via data mining, and functional annotation was done by Gene Ontology (GO) analysis. Eventually, the expression patterns of several miRNAs validated by quantitative real-time PCR analysis are consistent with sequencing results. Conclusion: We have identified a large number of miRNAs and their target genes and also functional annotations. Our study provides additional information on soybean miRNAs and an insight into the role of miRNAs during SMV-infection in soybean.


Sign in / Sign up

Export Citation Format

Share Document