scholarly journals Direct Analysis of Plutonium Metal for Gallium, Iron and Nickel by Energy Dispersive X-Ray Spectrometry

1981 ◽  
Vol 25 ◽  
pp. 163-168
Author(s):  
H. L. Bramlet ◽  
J. H. Doyle

AbstractAn x-ray secondary target method for routine determination of gallium, iron, and nickel in plutonium metal is described that has significant advantages over wet chemical analysis. Coupons requiring minimal preparation for analysis are produced as a breakaway tab on the plutonium ingot. All three elements are determined on the same coupon. Gallium is determined using an arsenic secondary target followed by iron and nickel using a zinc target. The analysis times are 5 minutes for gallium and 15 minutes for the combined iron and nickel. The method of analysis was evaluated in the range of from 0.5 to 1.5% gallium. Iron was investigated over the range of 67 to 3000 ppm and nickel from 64 to 110 ppm.

2016 ◽  
Vol 99 (6) ◽  
pp. 1572-1575 ◽  
Author(s):  
Dayara Virgínia L Ávila ◽  
Sidnei O Souza ◽  
Silvânio Silvério L Costa ◽  
Rennan Geovanny O Araujo ◽  
Carlos Alexandre B Garcia ◽  
...  

Abstract This work describes an analytical method for Zn determination in dry feeds for cats and dogs by energy-dispersive X-ray fluorescence (EDXRF). Samples of dry feed were powdered and prepared in the form of pellets for direct analysis by EDXRF. The LOQ (10σ) was 0.4 mg/kg. The samples were also analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) as an independent comparative method. Application of a paired t-test showed no significant differences between Zn concentrations obtained by EDXRF and ICP-OES (at a 95% confidence level). Analysis of variance was also applied to the results and revealed no significant differences between the two techniques (at a 95% confidence level). The precision, expressed as the RSD (n = 3), was RSD < 4.55%. This analytical method provides a simple, rapid, accurate, and precise determination of Zn in dry feeds for cats and dogs by EDXRF as direct, solid-sample analysis.


2017 ◽  
Vol 134 ◽  
pp. 35-40 ◽  
Author(s):  
Geysa B. Brito ◽  
Leonardo S.G. Teixeira ◽  
Maria Graças A. Korn

Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


2005 ◽  
Vol 39 (4) ◽  
pp. 391-394 ◽  
Author(s):  
Binbin Wang ◽  
John C. Jackson ◽  
Curtis Palmer ◽  
Baoshan Zheng ◽  
Robert B. Finkelman
Keyword(s):  

2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihaela Flondor ◽  
Ioan Rosca ◽  
Doina Sibiescu ◽  
Mihaela-Aurelia Vizitiu ◽  
Daniel-Mircea Sutiman ◽  
...  

In this paper the synthesis and the study of some complex compounds of Fe(III) with ligands derived from: 2-(4-chloro-phenylsulfanyl)-1-(2-hydroxy-3,5-diiodo-phenyl)-ethanone (HL1), 1-(3,5-dibromo-2-hydroxy-phenyl)-2-phenylsulfanyl-ethanone(HL2), and 2-(4-chloro-phenylsulfanyl)-1-(3,5-dibromo-2-hydroxy-phenyl)-ethanone (HL3) is presented. The characterization of these complexes is based on method as: the elemental chemical analysis, IR and ESR spectroscopy, M�ssbauer, the thermogravimetric analysis and X-ray diffraction. Study of the IR and chemical analysis has evidenced that the precipitates form are a complexes and the combination ratio of M:L is 1:2. The central atoms of Fe(III) presented paramagnetic properties and a octaedric hybridization. Starting from this precipitation reactions, a method for the gravimetric determination of Fe(III) with this organic ligands has been possible. Based on the experimental data on literature indications, the structural formulae of the complex compounds are assigned.


1994 ◽  
Vol 58 (391) ◽  
pp. 307-314 ◽  
Author(s):  
Mizuhiko Akizuki ◽  
Hirotugu Nisidoh ◽  
Yasuhiro Kudoh ◽  
Tomohiro Watanabe ◽  
Kazuo Kurata

AbstractA study of apatite crystals from the Asio mine, Japan, showed sectoral texture related to the growth of the crystal, and with optically biaxial properties within the sectors. Wet chemical analysis gave a composition Ca5(PO4)3(F0.64,OH0.38,Cl0.01)1.03 for the specimen.Additional diffraction spots were not observed in precession and oscillation X-ray photographs and electron diffraction photographs. Since the internal textures correlate with the surface growth features, it is suggested that the internal textures and the unusual optical properties were produced during nonequilibrium crystal growth. The fluorine/hydroxyl sites in hexagonal apatite are symmetrically equivalent in the solid crystal but, at a growth surface, this equivalence may be lost, resulting in a reduction of crystal symmetry. Heating of the apatite to about 850°C results in the almost complete disappearance of the optical anomalies due to disordering, which may be related to the loss of hydroxyl from the crystal.


Sign in / Sign up

Export Citation Format

Share Document