X-ray Residual Stress Measurement of Ground Surface of Metal-Ceramic Composite

1990 ◽  
Vol 34 ◽  
pp. 679-687 ◽  
Author(s):  
Zenjiro Yajima ◽  
Yukio Hirose ◽  
Yoichi Kishi ◽  
Kaisuke Tanaka

Machine parts made of ceramics are usually finished by grinding. Residual stresses as well as defects introduced by grinding will influence the fracture strength and the function of the ceramic parts. Although several investigators measured the grinding residual stresses by the X-ray diffraction method, their grinding conditions were rather limited.

1995 ◽  
Vol 39 ◽  
pp. 311-318
Author(s):  
Masaharu Miyano ◽  
Yukio Hirose

The X-ray diffraction method was applied to the measurement of residual stresses on the ground or polished surfaces of WC-Co alloys with various Co contents. The X-ray diffractions of WC 211 by Cu K α radiation were used for the stress measurement. The residual stresses on the ground or polished surfaces were all compression. For the same Co content, the compressive value increased with increasing surface roughness. The maximum residua) stress, which was -2.13 GPa, was observed in WC-5.5wt%Co ground with a #140 diamond wheel.The bending strengths of each alloys were obtained by three point bending tests. The bending strengths were influenced by grinding conditions and Co contents. The maximum value of 3.6 GPa was obtained in WC-16.0wt%Co ground with a #140 diamond wheel.For the same Co addition, the bending strengths were closely related to the residual stresses, These relations were approximated by straight lines.


1994 ◽  
Vol 38 ◽  
pp. 463-470
Author(s):  
Masaaki Ohtsuka ◽  
Hideaki Matsuoka ◽  
Yukio Hirose ◽  
Hitoshi Ishii

The various machine parts made of fine ceramics are usually finished by grinding. The X-ray elastic constants in ground ceramics are measured by the X-ray diffraction method, as a result a measurement error can occur. The cause of the error is the stress gradient in the material produced by the grinding. In the case of material in which a stress gradient is present, X-ray stress measurement data show non-linear 2θφψ- sin2 ψ diagrams. Until now, the X-ray stress measurement by the sin2ψ method makes use of effectively linear 2θφψ - sin2 ψ diagrams. In the case of 2θφψ - sin2 ψ diagrams showing non-linear behavior, however, good analysis method are generally not available.


1995 ◽  
Vol 39 ◽  
pp. 331-338
Author(s):  
Yoshihisa Sakaida ◽  
Keisuke Tanaka ◽  
Shintaro Harada

A new method of X-ray stress measurement was proposed to estimate non-destructively the steep residual stress distribution in the surface layer of ground Si3N4. We assumed an exponential decrement of the residual stress near the ground surface, and derived a formula for the lattice strain as a function of sin2Ψ. In the experiments, the diffraction angles were measured on the ground surface for a widest possible range of sin2ѱ using an Ω-goniometer. In order to measure the diffraction angle at very high sin η values, a scintillation counter was located on the -η side and an incident X-ray beam impinged on the ground surface with a very low angle from the +η side using the glancing incidence X-ray diffraction technique. A strong non-linearity was found in the 20-sin2ѱ diagrams especially at very high ѱ -angles. From the analysis of non-linearity, the stress distribution in the surface layer was determined. Tine residual stress took the maximum compression of 2 GPa at a depth of about 0.5 μm from the surface, and then diminished to zero at about 25 μm in depth. In the close vicinity of the ground surface, the compressive residual stress was relieved because of both the surface roughness and microcracking induced during the grinding process.


2011 ◽  
Vol 189-193 ◽  
pp. 734-742
Author(s):  
Hua Ji ◽  
Hui Chen ◽  
Guo Qing Gou ◽  
Da Li ◽  
Yan Liu ◽  
...  

X-ray diffraction method has been employed to calibrate the stress of 6082 aluminum alloy which has been widely used among modern industrial products. Based on elastic tensile conditions, by designing rod sample of uniform intensity calibration (RSUIC), the stress measurement by X-ray diffraction method has been verificated by using elastic tensile theory calculation method and electrometric method. The results show that the stress measured by the tensile stress theoretical calculation, electrometric method and X-ray diffraction method was in good accordance with each other. And the matching relation between the surface stress measured by X-ray diffraction and the internal stress is investigated. The research will lay a foundation for the application of iXRD stress instrument for nondestructive measuring the welding residual stress of aluminum alloy.


Author(s):  
Cameron Lonsdale ◽  
John Oliver

Railroad wheels are manufactured with beneficial residual compressive hoop stresses, which are imparted by rim quenching and tempering. Hoop and radial residual stresses for wheels have been studied in detail by various organizations over the years and are relatively well characterized. However axial residual stresses, in the orientation across the rim width from back rim face to front rim face, have not been extensively investigated. This paper describes a failure mode known as a vertical split rim (VSR) and describes efforts to measure the axial residual stresses in, 1) new wheels, 2) service worn wheels and 3) wheels that have failed from VSRs. Initial axial residual stress measurement efforts, using core drilling and x-ray diffraction from the tread surface, are briefly reviewed. Further more extensive work using x-ray diffraction to measure axial residual stress on radial wheel slices is described and data are presented, focusing on differences between the three wheel types. The concept of Axial Stress Amplification (ASA) is outlined, and the relationship of axial residual stress to VSRs is discussed. A proposed mechanism for VSR formation is described. Future work, with a goal of reducing or eliminating VSRs in service, is considered.


2012 ◽  
Vol 729 ◽  
pp. 199-204 ◽  
Author(s):  
Dávid Cseh ◽  
Valéria Mertinger

Residual stresses have a fundamental effect on the operational behaviour and lifetime of industrial products. The fatigue resistance of machine parts can be increased by introducing residual compressive stresses into the surface region. For certain machine parts especially in the vehicle industry the residual stress is strongly demanded by the quality control. For this reason, measuring the stress accurately is becoming increasingly important. The Almen test, which only gives a qualitative result, is widely used in the industry. Shot peening and rolling are methods which are suitable for creating elastic residual stresses. This paper examines the technologies used by Rába Futómű Nyrt. to increase the lifetime by means of residual stress. We performed analysis of the residual stress of samples shot peened the same way but under different heat treatment states. We compared the residual stress values of burnished and hardened shaft joints, and the residual stress states of gear made of hardened alloy, comparing the carbonized ones to ones which were shot peened under small intensity.


2020 ◽  
Vol 25 ◽  
Author(s):  
Bras Senra de Oliveira ◽  
Lino Alberto Soares Rodrigues ◽  
Ednelson Silva Costa ◽  
Eduardo de Magalhães Braga ◽  
Marcos Allan Leite dos Reis

Abstract: This work is distinguished by searching for a non-destructive technology, and X-ray diffraction was validated by the XStress 3000 analyser. Measurements of residual stresses in the welded zone of premium pearlitic rails was performed, rail surface hardness of 370 HB and 0.79% carbon content. The welding of the rails was done by flash butt process, performed by Schlatter GAAS 80 stationary equipment. The results of the tensile and compressive stress measurements identified the residual stresses in the welded zone, with specific zones of tensile stresses misplaced at the weld center, with values up to 391 MPa, and compressive stresses, with values up to -166 MPa, as it moves away rails weld center. An important point of this study is the residual stress measurement considering a complete welding process, including: pre-grinding, flash butt welding, heat treatment, finishing grinding and straightening. Lastly, was observed the welding technique potentially can induce residual stresses at rails.


Sign in / Sign up

Export Citation Format

Share Document