Line Broadening Studies on Highly Defective TiO2 Produced by High Pressure Shock Loading

1983 ◽  
Vol 27 ◽  
pp. 379-388
Author(s):  
B. Morosin ◽  
E. J. Graeber ◽  
R. A. Graham

Enhanced solid state reactivity of materials both during and after shock compression has been attributed to the introduction of large numbers of defects into the crystalline lattices and to reduction in the particle and crystallite size of powders [1]. In particular, orders of magnitude increases in the catalytic activity has been observed In shock-modified TiO2 [2]. Line broadening of x-ray diffraction profiles provides a means to determine the coherent crystallite size and the residual lattice strain resulting from defect concentrations. The present study on shock-loaded rutile is a detailed Investigation of the influence of shock loading on residual lattice strain and coherent crystallite size. Annealing of shock-modified rutile powders is also studied.

1983 ◽  
Vol 27 ◽  
pp. 369-378
Author(s):  
B. Morosin ◽  
E. J. Graeber ◽  
R. A. Graham

Enhanced solid state reactivity of materials both during and after shock compression has been attributed to the introduction of large numbers of defects into the crystalline lattices and to reduction in the particle and crystallite size of powders [1,2]. Line broadening of x-ray diffraction profiles provides a means to determine the residual lattice strain resulting from such defect concentrations as well as a means to determine the coherent crystallite size. Various diffraction studies on shock-loaded powder materials have previously been reported and much of this work primarily by Soviet and Japanese scientists has recently been reviewed [2]. Cohen has reported results on shock-loaded copper [3]. In prior work, however, shock, pressures have not typically been quantified and there are few detailed line broadening investigations of refractory inorganic powders [1,4,5]. The present study on shock-loaded alumina powders is a detailed investigation of the influence of shock loading on residual lattice strain and coherent crystallite size.


1983 ◽  
Vol 24 ◽  
Author(s):  
B. Morosin ◽  
R. A. Graham

ABSTRACTPowders of AlN, TiC and TiB2 have been subjected to controlled shock loading with peak pressures in the samples between 14 to 27 GPa and preserved for post-shock study. Broadened x-ray diffraction peak profiles are analyzed by a simplified method and show increases in residual lattice strain and small decreases in crystallite size. Strain values range from 10−5 to 10−4 for TiB2 and to values larger than 10−3 for TiC and AlN.


1987 ◽  
Vol 31 ◽  
pp. 287-294 ◽  
Author(s):  
Y. Zhang ◽  
J. M. Stewart ◽  
B. Morosin ◽  
R. A. Graham ◽  
C. R. Hubbard

AbstractHematite (α-Fe2O3) powder compacts have been subjected to controlled, quantitative high pressure shock loading at peak pressures from 8-27 GPa and preserved for post shook analysis. The broadened x-ray diffraction peak profiles have been analyzed to determine the residual lattice strain and the coherent crystallite sizes. Maximum modification effects are observed near 17 GPa with strain values near 3 x 10-3 and size values near 200 Å suggesting annealing at higher shock pressure, resulting from the higher shock temperature.


1992 ◽  
Vol 36 ◽  
pp. 595-601
Author(s):  
P. Newcomer ◽  
B. Morosin ◽  
R. A. Graham

AbstractX-ray diffraction line-profile analysis on tetragonal forms of SnO2 (cassiterite), MnO2 (pyrolusite), and previously studied TiO2 (rutile), which were subjected to high pressure shock loading, show that residual lattice strain and coherent “crystal” size are a function of shock parameters. An interesting observation on a sample of MnO2 concerns the recovery of cubic Mn2O3 (bixbyite) in the material subjected to 22 GPa, indicating a shock-induced chemical synthesis.


1997 ◽  
Vol 30 (4) ◽  
pp. 427-430 ◽  
Author(s):  
F. Sánchez-Bajo ◽  
F. L. Cumbrera

A modified application of the variance method, using the pseudo-Voigt function as a good approximation to the X-ray diffraction profiles, is proposed in order to obtain microstructural quantities such as the mean crystallite size and root-mean-square (r.m.s.) strain. Whereas the variance method in its original form is applicable only to well separated reflections, this technique can be employed in the cases where there is line-profile overlap. Determination of the mean crystallite size and r.m.s. strain for several crystallographic directions in a nanocrystalline cubic sample of 9-YSZ (yttria-stabilized zirconia) has been performed by means of this procedure.


2006 ◽  
Vol 118 ◽  
pp. 53-58
Author(s):  
Elisabeth Meijer ◽  
Nicholas Armstrong ◽  
Wing Yiu Yeung

This study is to investigate the crystallite development in nanostructured aluminium using x-ray line broadening analysis. Nanostructured aluminium was produced by equal channel angular extrusion at room temperature to a total deformation strain of ~17. Samples of the extruded metal were then heat treated at temperatures up to 300oC. High order diffraction peaks were obtained using Mo radiation and the integral breadth was determined. It was found that as the annealing temperature increased, the integral breadth of the peak reflections decreased. By establishing the modified Williamson-Hall plots (integral breadth vs contract factor) after instrumental correction, it was determined that the crystallite size of the metal was maintained ~80 nm at 100oC. As the annealing temperature increased to 200oC, the crystallite size increased to ~118 nm. With increasing annealing temperature, the hardness of the metal decreased from ~60 HV to ~45 HV.


2019 ◽  
Vol 43 (5) ◽  
pp. 1903-1911 ◽  
Author(s):  
Ahmed A. Al-Tabbakh ◽  
Nilgun Karatepe ◽  
Aseel B. Al-Zubaidi ◽  
Aida Benchaabane ◽  
Natheer B. Mahmood

2009 ◽  
Vol 24 (3) ◽  
pp. 228-233 ◽  
Author(s):  
S. R. Aghdaee ◽  
V. Soleimanian

The modified Williamson–Hall and Warren–Averbach methods were used successfully for analyzing experimentally observed anisotropic X-ray diffraction line broadening and for determining reliable values of crystallite size and dislocation density in cerium oxide. The modified Williamson–Hall plot gives 22.3(2) nm for volume-weighted crystallite size, while the modified Warren–Averbach produces 18.0(2) nm for area-weighted grain size. The dislocation density and effective outer cut-off radius of dislocations obtained from the modified Warren–Averbach method are 1.8(3)×1015 m−2 and 15.5(1) nm, respectively.


1962 ◽  
Vol 33 (2) ◽  
pp. 708-712 ◽  
Author(s):  
A. J. Opinsky ◽  
J. L. Orehotsky ◽  
C. W. W. Hoffman

Sign in / Sign up

Export Citation Format

Share Document