Residual Stress Determination in Al2O3/SiC (Whisker) Composites By X-Ray Diffraction

1987 ◽  
Vol 31 ◽  
pp. 231-243 ◽  
Author(s):  
Paul Predecki ◽  
Alias Abuhasan ◽  
Charles S. Barrett

Residual strains and stresses were determined in both phases of a hot pressed α-Al2O3 composite containing 25 wt % β (cubic) SiC whiskers using conventional x-ray diffraction and profile analysis. Both phases in this composite were randomly oriented as confirmed by back reflection pinhole photographs. The reflections found most useful with Cu Kα radiation were: 511 + 333 for β-SiC at -134° 2θ and 146 for α-Al2O3 at -136° 2θ. The peak shift and broadening observed in these reflections, relative to the starting powders, were largely due to the two phases mutually constraining each other elastically. This was confirmed by the reversal of the peak shift and most of the broadening in the SiC reflections when the Al2O3 matrix was etched away. Using the method of Cohen and Noyan, it was found possible to separate the macrostresses from the microstress components in each phase. The microstresses were largely hydrostatic; of the order of 895 MPa (130 ksi) compressive in the whiskers and 370 MPa (54 ksi) tensile in the matrix. The macrostresses were ~79 MPa (11.5 ksi) tensile.

1994 ◽  
Vol 9 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Benjamin L. Ballard ◽  
Paul K. Predecki ◽  
Camden R. Hubbard

Residual strains and microstresses are evaluated for both phase of a hot-pressed, fine-grained α-alumina reinforced with 25 wt% (29 vol%) single-crystal silicon carbide whiskers at temperatures from 25 to 1000 °C. The sample was maintained in a nonoxidizing environment while measurements of the interplaner spacing of alumina (146) and SiC (511 + 333) were made using X-ray diffraction methods. The residual strains were profiled at temperature increments of 250 °C from which the corresponding microstresses were calculated. Linear extrapolation of the SiC ε33 profile indicates that the strains are completely relaxed at a temperature of approximately 1470 °C. These residual stress relaxation results suggest that elevated temperature toughness and fracture strength of this composite may result from cooperative mechanisms.


1992 ◽  
Vol 36 ◽  
pp. 481-488 ◽  
Author(s):  
M. R. James ◽  
M. A. Bourke ◽  
J. A. Goldstone ◽  
A. C. Lawson

AbstractMetal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of three titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for this behavior has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state.


1983 ◽  
Vol 27 ◽  
pp. 197-206
Author(s):  
C. P. Gazzara

One of the most detrimental effects on the accuracy of an X-ray diffraction residual stress analysis, XRDRSA(l), is found in the examination of textured materials. The degree of elastic anisotropy and texture is in general agreement with the extent of the error in the residual stress. Several approaches have been made to correct for the effects of texture, particularly involving experimental techniques. Reviews of such efforts are given by H. D811e(2), v.M. Hauk﹛3) and G. Maeder, J.L. Lebrun and J.M. Sprauel (4), just to mention a few.A brief chronology of the texture corrections involved in XRDRSA follows. With isotropic materials the d spacing of a crystal lattice, d, is assumed to vary linearly with sin2ψ. With textured materials the d vs sin2ψ relationship is nonlinear. This is due to the anisotropy of the elastic constants and their departure from a random distribution, or taking on a preferred orientation.


2006 ◽  
Vol 524-525 ◽  
pp. 229-234
Author(s):  
M. Belassel ◽  
J. Pineault ◽  
M.E. Brauss

Although x-ray diffraction techniques have been applied to the measurement of residual stress in the industry for decades, some of the related details are still unclear to many production and mechanical testing engineers working in the field. This is because these details, specifically those associated with the transition between diffraction and mechanics, are not always emphasized in the literature. This paper will emphasize the appropriate calculation methods and the steps necessary to perform high quality residual stress measurements. Additionally, details are given regarding the difference between mechanical and x-ray elastic constants, as well as the true meaning of stress and strain from both diffraction and strain gage point of view. Cases where the material is subject to loading above the yield limit are also included.


2011 ◽  
Vol 284-286 ◽  
pp. 284-292 ◽  
Author(s):  
Shao Chun Sun ◽  
Zhi Yuan Chen ◽  
Qiang Wu ◽  
De Xin Ma ◽  
Yu Tao Zhao

In locally long fiber reinforced aluminum parts two types residual stresses exist. They are the microscopic residual stress between fiber and matrix and the macroscopic residual stress between reinforced and unreinforced zones. The residual stresses between fiber and matrix in γ-Al2O3 long fiber reinforced aluminum alloy Al-6-1-1 were measured with X-ray Diffraction process as well as simulated with FEM method. The results indicated that the residual stresses in both fiber and matrix were distributed very unequally. The maximum tensile residual stress occurred at the boundary in the matrix and the maximum compressive residual stresses occurred near the boundary in the fiber. The macroscopic residual stresses between the reinforced and unreinforced zones were also measured with borehole method as well as simulated with FEM. It was found that the macroscopic residual stresses at most locations in both the reinforced and unreinforced zones were not harmfully high. However in both reinforced and unreinforced zones there were small sub-zones of very large tensile residual stresses.


Sign in / Sign up

Export Citation Format

Share Document