Techniques for the Determination of Particle Size and Texture in Retained Austenite / Martensite Microstructures and Interpretation of the Measurements

1995 ◽  
Vol 39 ◽  
pp. 473-479
Author(s):  
J. D. Makinson ◽  
W. N. Weins ◽  
Y. Xu ◽  
D. J. Medlin ◽  
R. V. Lawrence

The measurement of retained austenite is important in the analysis and quality control of asmanufactured steel components, as well as to the evaluation of components returned from service. The amounts of retained austenite are most accurately measured using x-ray diffraction techniques where the integrated area under the austenite and martensite diffraction peaks from a sample are determined. In addition to quantitative information about the amount of each phase, however, the raw x-ray diffraction data contains other information that may be useful in evaluating the condition of a steel component. The diffracting particle size of both the martensite and austenite phases, and the presence and degree of preferred orientation in both phases can be calculated from the basic four peak retained austenite x-ray scan. This information, in conjunction with knowledge of the amount of retained austenite present, may be used to determine information about variations in materials and manufacturing processes as well as changes due to service. If the residual stress in both phases is also measured, additional conclusions can be made regarding changes due to processing and service. The theoretical and experimental aspects of these measurements are reviewed data from a case history in which these types of measurements were used to determine changes due to processing and service are presented.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


1977 ◽  
Vol 49 (14) ◽  
pp. 2196-2203 ◽  
Author(s):  
J. W. Edmonds ◽  
W. W. Henslee ◽  
R. E. Guerra

2015 ◽  
Vol 628 ◽  
pp. 110-115 ◽  
Author(s):  
Helder Carvalho Ferreira ◽  
Francisco Jose Martins Boratto ◽  
Vicente Tadeu Lopes Buono

2013 ◽  
Vol 795 ◽  
pp. 124-127 ◽  
Author(s):  
Nur Farhana Hayazi ◽  
Yu Wang ◽  
Mohd Noor Mazlee ◽  
Sammy Lap Ip Chan

This work investigates the dehydrogenation of TiH2 powder during isothermal heating at 600°C using the static x-ray scans of high temperature x-ray diffraction (XRD). As-received TiH2 powder with a particle size of 5 μm and purity of 99.1% was used for this measurement. With increasing temperature, phase transformations occurred because of dehydrogenation and it happened very fast. It was found that during the phase transformation of TiH2 to titanium, some transitional phases observed and occurred. This finding confirmed the in-situ determination of TiH2 powder dehydrogenation by using Rietveld Refinement Method from our previous research. This study is useful for the fabrication of titanium-based composites and titanium alloys from TiH2 powder because the different phases in TiH2 will affect the final mechanical properties in titanium.


2001 ◽  
Vol 16 (4) ◽  
pp. 198-204 ◽  
Author(s):  
C. K. Lowe-Ma ◽  
W. T. Donlon ◽  
W. E. Dowling

Retained austenite is an important characteristic of properly heat-treated steel components, particularly gears and shafts, that will be subjected to long-term use and wear. Normally, either X-ray diffraction or optical microscopy techniques are used to determine the volume percent of retained austenite present in steel components subjected to specific heat-treatment regimes. As described in the literature, a number of phenomenological, experimental, and calculation factors can influence the volume fraction of retained austenite determined from X-ray diffraction measurements. However, recent disagreement between metallurgical properties, microscopy, and service laboratory values for retained austenite led to a re-evaluation of possible reasons for the apparent discrepancies. Broad, distorted X-ray peaks from un-tempered martensite were found to yield unreliable integrated intensities whereas diffraction peaks from tempered samples were more amenable to profile fitting with standard shape functions, yielding reliable integrated intensities. Retained austenite values calculated from reliable integrated intensities were found to be consistent with values obtained by Rietveld refinement of the diffraction patterns. The experimental conditions used by service laboratories combined with a poor choice of diffraction peaks were found to be sources of retained austenite values containing significant bias.


2001 ◽  
Vol 313 (1-2) ◽  
pp. 145-152 ◽  
Author(s):  
L Zhao ◽  
N.H van Dijk ◽  
E Brück ◽  
J Sietsma ◽  
S van der Zwaag

Sign in / Sign up

Export Citation Format

Share Document