scholarly journals A simple spectrophotometric method for the determination of trace level lead in biological samples in the presence of aqueous micellar solutions

2006 ◽  
Vol 20 (5-6) ◽  
pp. 285-297 ◽  
Author(s):  
Humaira Khan ◽  
M. Jamaluddin Ahmed ◽  
M. Iqbal Bhanger

A very simple, ultra-sensitive and fairly selective new spectrophotometric method has been developed for the rapid determination of lead(II) at ultra-trace level using 1,5-diphenylthiocarbazone (dithizone) in presence of aqueous micellar solutions. The proposed method enabled the determination of lead down to µg l−1in human blood and urine in aqueous media without resource of any “clean-up” step. The most remarkable point of this method is that the presence of micellar system avoids the previous steps of solvent extraction and reduces the cost, toxicity while enhancing the sensitivity, selectivity and the molar absorptivity. The complex formation of lead in blood with dithizone was completed within a minute at room temperature and the absorbance remains stable for 24 h. The average molar absorption coefficient and Sandell's sensitivity were found to be 3.99×105l mol−1 cm−1and 30 ng cm−2of Pb, respectively. Linear calibration graphs were obtained for 0.06–60 mg l−1of PbII; the stoichiometric composition of the chelate is 1:2 (Pb:dithizone). The interference from over 60 cations, anions and complexing agents has been studied at 1 mg l−1of PbII. The method was successfully used in the determination of lead in several biological samples (human blood and urine and bovine liver), solution containing both lead(II) and lead(IV) and complex synthetic mixtures. The results of biological analyses by the spectrophotometric method were in excellent agreement with those obtained by AAS. The results of lead concentration in biological samples were varied with age, sex and place which have been discussed.

2008 ◽  
Vol 3 ◽  
pp. ACI.S977 ◽  
Author(s):  
Rubina Soomro ◽  
M. Jamaluddin Ahmed ◽  
Najma Memon ◽  
Humaira Khan

A simple high sensitive, selective, and rapid spectrophotometric method for the determination of trace gold based on the rapid reaction of gold(III) with bis(salicylaldehyde)orthophenylenediamine (BSOPD) in aqueous and micellar media has been developed. BSOPD reacts with gold(III) in slightly acidic solution to form a 1:1 brownish-yellow complex, which has an maximum absorption peak at 490 nm in both aqueous and micellar media. The most remarkable point of this method is that the molar absorptivities of the gold-BSOPD complex form in the presence of the nonionic TritonX-100 surfactant are almost a 10 times higher than the value observed in the aqueous solution, resulting in an increase in the sensitivity and selectivity of the method. The apparent molar absorptivities were found to be 2.3 x 10 4 L mol-1 cm-1 and 2.5 x 10 5 L mol-1 cm-1 in aqueous and micellar media, respectively. The reaction is instantaneous and the maximum absorbance was obtained after 10 min at 490 nm and remains constant for over 24 h at room temperature. The linear calibration graphs were obtained for 0.1 -30 mg L-1 and 0.01 -30 mg L-1 of gold(III) in aqueous and surfactant media, respectively. The interference from over 50 cations, anions and complexing agents has been studied at 1 mg L-1 of Au(III); most metal ions can be tolerated in considerable amounts in aqueous micellar solutions. The Sandell's sensitivity, the limit of detection and relative standard deviation (n = 9) were found to be 5 ng cm-2, 1 ng mL-1 and 2%, respectively in aqueous micellar solutions. Its sensitivity and selectivity are remarkably higher than that of other reagents in the literature. The proposed method was successfully used in the determination of gold in several standard reference materials (alloys and steels), environmental water samples (potable and polluted), and biological samples (blood and urine), geological, soil and complex synthetic mixtures. The results obtained agree well with those samples analyzed by atomic absorption spectrophotometry (AAS).


2003 ◽  
Vol 17 (1) ◽  
pp. 45-52 ◽  
Author(s):  
M. Jamaluddin Ahmed ◽  
Md. Shah Alam

A simple, sensitive and highly selective direct spectrophotometric method for the determination of trace levels of mercury(II) in various samples is described. Diphenylthiocarbazone (dithizone) reacts in slightly acidic 50% aqueous 1,4-dioxane media (0.18–1.80 M sulphuric acid) with mercury(II) to give an orange chelate which has an absorption maximum at 488 nm. The average molar absorption co-efficient and Sandell's sensitivity were found to be 2.5×104l mol−1 cm−1and 0.015 μg of Hg(II) cm−2, respectively. The reaction is immediate and absorbance remains stable for over 24 h. Beer's law is obeyed for concentration range of mercury(II) between 0.1 μg ml−1and 25 μg ml−1; the stoichiometric composition of the chelate is 1 :2 (mercury : dithizone). The various analytical parameters, such as effect of time, acidity, reagent concentration and foreign species, were studied. The method was applied successfully to a number of environmental waters (portable and polluted), biological samples (human blood, urine and fish), soils, plant samples (potato, cabbage, lettuce, carrot and tomato), solutions containing both mercury(I) and mercury(II) and complex synthetic mixtures. The method is very simple and requires no solvent extraction or pre-concentration steps.


Author(s):  
M. Jamaluddin Ahmed ◽  
M. Tazul Islam ◽  
Sumaira Aziz

A very simple, ultra-sensitive and highly selective non-extractive spectrophotometric method for the determination of trace amounts of lead using 5,7-dibromo-8-hydroxyquinoline (DBHQ) has been developed. DBHQ reacts in a slightly acidic (0.0006-0.0025 M HCl) aqueous solution with lead (II) in 30% ethanolic media to produce highly absorbent a greenish-yellow chelate which has an absorption maximum at 390 nm. The reaction is instantaneous and the absorbance remains stable for over 24 h. The average molar absorption co-efficient and Sandal’s sensitivity were found to be 6.16 x 105 L mol-1cm-1 and 5 ng cm-2 of lead (II), respectively. Linear calibration graphs were obtained for 0.01- 60.0 mg L-1 of lead (II) having detection limit of 1.0 μg L-1 and RSD 0-2%. The stoichiometric composition of the chelate is 1:2 (Pb: DBHQ). A large excess of over 60 cations, anions and complexing agents (like, chloride, phosphate, azide, tartrate, oxalate, SCN- etc.) do not interfere in the determination. The developed method was successfully used in the determination of lead levels in several Standard Reference Materials (alloys, steels, natural water, bovine liver, human urine and hair) as well as in some environmental waters (potable and polluted), biological samples (human blood, urine and hair), soil samples, food samples (vegetables, rice, wheat) solutions containing both lead (II) and lead (IV) and complex synthetic mixtures. The results of biological and food analyses by the spectrophotometric method were found to be in excellent agreement with those obtained by AAS.


2020 ◽  
Vol 11 (4) ◽  
pp. 385-395
Author(s):  
Shaifa Abrarin ◽  
Mohammed Jamaluddin Ahmed

A very simple, non-extractive and new spectrophotometric method for the swift determination of trace amount of vanadium using salicylaldehyde-benzoylhydrazone (Sal-BH) has been developed. Sal-BH undergoes a reaction in a slightly acidic solution (0.0016-0.0032 M H2S04) with vanadium to give a light greenish-yellow chelate, which has an absorption maximum at 392 nm. The reaction is instantaneous and absorbance remains stable for over 24 hrs. The average molar absorption co-efficient and Sandell’s sensitivity were found to be 2.5039×105 L/mol.cm and 1.0 ng/cm2 V, respectively. Beer’s law was obeyed for 0.001-30 mg/L of V, providing a detection limit of 0.1 µg/L of V and RSD 0-2 %. The stoichiometric composition of the chelate is 1:1 (V:Sal-BH). Interference study shows that a large excess of over 60 cations, anions, and some common complexing agents (such as chloride, azide, tartrate, EDTA and SCN‑, etc.) satisfy the tolerance limit. The developed method was successfully used in the determination of vanadium in several standard reference materials as well as in some environmental waters, biological fluids, soil, food and pharmaceutical samples and solutions containing both vanadium (IV) and vanadium (V). The results of the proposed method for assessing biological, food and vegetable samples were comparable with ICP-OES and AAS were found to be in excellent agreement. The method has high precision and accuracy (s = ±0.01 for 0.5 mg/L).


2020 ◽  
Vol 11 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Mohammed Jamaluddin Ahmed ◽  
Ayesha Afrin ◽  
Mohammad Ohi Uddin

A very simple, sensitive and highly selective non-extractive new spectrophotometric method has been developed for the determination of molybdenum at nano-trace levels using salicylaldehyde-benzoylhydrazone (Sal-BH). The method is based on the reaction of non-absorbent Sal-BH in a slightly acidic solution (0.0025-0.0075 M H2S04) with molybdenum (VI) to give a light yellowish chelate, which has an absorption maximum at 440 nm. The reaction is instantaneous and absorbance remains stable for over 24 h. The average molar absorption coefficient and Sandell’s sensitivity were found to be 4.32×105 L/mol.cm and 5 ng/cm2 of molybdenum, respectively. Linear calibration graphs were obtained for 0.01-60.00 mg/L of molybdenum having detection limit of 1 µg/L and RSD 0.0-2.0 %. The stoichiometric composition of the chelate is 1:1 (Mo:Sal-BH). A large excess of over 60 cations, anions and some common complexing agents (such as chloride, azide, tartrate, EDTA, SCN- etc.) do not interfere in the determination. The method was successfully used in the determination of molybdenum in several Certified Reference Materials (Alloys, steels, water, hair and bovine liver) as well as in some environmental waters (Potable and polluted), biological samples (Human blood, urine, nails, hair, food and vegetables), soil samples, and solutions containing both molybdenum(VI) and molybdenum(V) as well as complex synthetic mixtures. The results of the proposed method for assessing biological, food and vegetables samples were found to be in excellent agreement with those obtained by ICP-OES and AAS. The method has high precision and accuracy (s = ±0.01 for 0.5 mg/L).


2021 ◽  
Vol 12 (4) ◽  
pp. 469-481
Author(s):  
Muhammad Jamaluddin Ahmed ◽  
Muhammad Jihan Uddin ◽  
Muhammad Emdadul Hoque

A new spectrophotometric reagent, salicylaldehyde-orthoaminophenol (Sal-OAP) has been synthesized and characterized for the determination of selenium through novel reaction techniques. Also, a new highly selective, and sensitive spectrophotometric method for the nano-trace determination of selenium using salicylaldehyde-orthoaminophenol (Sal-OAP) has been developed. Sal-OAP undergoes reaction in a slightly acidic solution (0.0001-0.0002 M H2S04) with selenium (IV) to give an orange-red chelate, which has an absorption maximum at 379 nm. The reaction is instantaneous and absorbance remains stable for over 24 h. The average molar absorption co-efficient and Sandell’s sensitivity were found to be 6.4×105 L/mol.cm and 1.0 ng/cm2 of, respectively. Linear calibration graphs were obtained for 0.001-40.000 mg/Lof Se having detection limit of 0.1 µg/L and RSD 0-2 %. The stoichiometric composition of the chelate is 1:2 (Se:Sal-OAP). A large excess of over 60 cations, anions and some common complexing agents, such as chloride, azide, tartrate, EDTA, SCN¯etc., do not interfere in the determination. The developed method was successfully used in the determination of selenium in several Certified Reference Materials (Alloys, steels, human urine, bovine liver, drinking water, tea, milk, soil, and sediments) as well as in some environmental waters (Potable and polluted), biological fluids (Human blood, urine, hair, and milk), soil samples, food samples (Vegetables, rice, and wheat) and pharmaceutical samples (Tablet and syrup) and solutions containing both selenium (IV) and selenium (VI) as well as complex synthetic mixtures. The results of the proposed method for assessing biological, food and vegetables and soil samples were comparable with ICP-OES and AAS were found to be in excellent agreement. The method has high precision and accuracy (s = ±0.01 for 0.5 mg/L).


2021 ◽  
pp. 1-7
Author(s):  
Nadia Arbouche ◽  
Pascal Kintz ◽  
Cecile Zagdoun ◽  
Laurie Gheddar ◽  
Jean-Sébastien Raul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document