scholarly journals Mn2+–DNA interactions in aqueous systems: A Raman spectroscopic study

2006 ◽  
Vol 20 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Cristina M. Muntean ◽  
Rolf Misselwitz ◽  
Lubomir Dostál ◽  
Heinz Welfle

Interaction of natural calf thymus DNA with Mn2+ions was studied by means of Raman spectroscopy. Spectra of DNA in 10 mM Na-cacodylate buffer, pH 6.2, 10 mM NaCl and in buffer containing Mn2+ions were measured at room temperature. Mn2+concentrations varied between 0 and 0.6 M. DNA backbone conformational changes and DNA denaturation were not observed in the concentration range 0 and 0.5 M, however, DNA condensation was observed at a critical concentration of 100 mM Mn2+that prevented the measurement of Raman spectra. Binding of Mn2+to the charged phosphate groups of DNA is indicated in the spectra. A high affinity of Mn2+for guanine N7 was obvious, and binding to adenine was barely suggested.

2006 ◽  
Vol 20 (5-6) ◽  
pp. 261-268 ◽  
Author(s):  
Cristina M. Muntean ◽  
Rolf Misselwitz ◽  
Heinz Welfle

The influence of Mn2+ions on the structure of natural calf thymus DNA was studied by Raman spectroscopy. Measurements were done at room temperature and pH 6.2±0.2, in the presence of the physiological concentration of 150 mM Na+ions, and in the presence of Mn2+concentrations that varied between 0 and 600 mM. No condensation of DNA was observed at any of the Mn2+concentrations. At 5 mM Mn2+and 150 mM Na+no significant influence of Mn2+ions on the DNA structure can be observed. Compared with our previous results obtained at 10 mM Na+ions, binding of Mn2+ions to charged phosphate groups and to DNA bases is inhibited in the presence of 150 mM Na+ions. DNA backbone conformational changes were not observed in the whole concentration range of Mn2+ions as judging from the Raman spectra. No evidence for DNA melting was identified. A high Mn2+affinity for binding to guanine N7 and possibly, in a much lesser extent, to adenine have been found.


2009 ◽  
Vol 23 (3-4) ◽  
pp. 155-163 ◽  
Author(s):  
Cristina M. Muntean ◽  
Konstantinos Nalpantidis ◽  
Ingo Feldmann ◽  
Volker Deckert

The influence of Zn2+ions on the structure of natural calf thymus DNA was studied by Raman spectroscopy. Measurements were done at room temperature and pH 6.2±0.1, in the presence of 10 mM Na+, and of Zn2+in a concentration range varying between 0 and 250 mM, respectively. No condensation of DNA was observed.As judging from the marker bands near 681 cm−1(dG), 729 cm−1(dA), 752 cm−1(dT), and 787 cm−1(dC, dT) altered nucleoside conformations in these residues are supposed to occur, in different intervals of Zn2+ions concentration. Changes in the conformational marker centered around 835 cm−1, upon Zn2+binding to DNA, were detected. Binding of zinc(II) ions to the charged phosphate groups of DNA, stabilizing the double helical structure, is indicated in the spectra. We have found that binding of metal ions at N3 of cytosine takes place at zinc(II) concentrations between 150–250 mM and interaction of Zn2+ions with adenine is observed in a concentration range from 10 to 250 mM. Binding of zinc(II) ions to N7 of guanine and, possibly, in a lesser extent to adenine was also observed as indicated by the Raman marker bands near 1490 and 1581 cm−1. There is no intensity change of the band at 1668 cm−1, suggesting no change in their base pairing and no change induced in the structure of water by Zn2+cations. No evidence for DNA melting was identified.


Author(s):  
Vinci Mizuhira ◽  
Hiroshi Hasegawa

Microwave irradiation (MWI) was applied to 0.3 to 1 cm3 blocks of rat central nervous system at 2.45 GHz/500W for about 20 sec in a fixative, at room temperature. Fixative composed of 2% paraformaldehyde, 0.5% glutaraldehyde in 0.1 M cacodylate buffer at pH 7.4, also contained 2 mM of CaCl2 , 1 mM of MgCl2, and 0.1% of tannic acid for conventional observation; and fuether 30-90 mM of potassium oxalate containing fixative was applied for the detection of calcium ion localization in cells. Tissue blocks were left in the same fixative for 30 to 180 min after MWI at room temperature, then proceeded to the sampling procedure, after postfixed with osmium tetroxide, embedded in Epon. Ultrathin sections were double stained with an useal manner. Oxalate treated sections were devided in two, stained and unstained one. The later oxalate treated unstained sections were analyzed with electron probe X-ray microanalyzer, the EDAX-PU-9800, at 40 KV accelerating voltage for 100 to 200 sec with point or selected area analyzing methods.


1981 ◽  
Vol 46 (3) ◽  
pp. 772-780 ◽  
Author(s):  
Jorga Smolíková ◽  
Jan Pospíšek ◽  
Karel Bláha

Infrared spectra of the L-alanine (I), L-leucine (II), L-valine (III) and L-tert-leucine (IV) N-acetyl N'-methylamides were measured. Amides I-IV are not self associated in tetrachlormethane in the concentration 2 . 10-5 mol l-1 at room temperature and in tetrachloroethylene in the concentration 1.5 . 10-4 mol l-1 at temperatures above 65° C. True conformational changes are observable only with the least flexible amide IV which exists at room temperature in a C5 conformation. This conformational type is also highly populated in the valine derivative III, but is less important in the alanine and leucine derivatives I and II in which the intramolecularly bonded C7 and the distorted hydrogen-nonbonded conformations contribute seriously.


2014 ◽  
Vol 69 (11-12) ◽  
pp. 1229-1236
Author(s):  
Matthias Wörsching ◽  
Constantin Hoch

Abstract Cesium hydroxide, CsOH, was for the first time characterised on the basis of single-crystal data. The structure is isotypic to the one of the room-temperature modification of NaOH and can be derived from the NaCl structure type thus allowing the comparison of all alkali metal hydroxide structures. Raman spectroscopic investigations show the hydroxide anion to behave almost as a free ion as in the gas phase. The X-ray investigations indicate possible H atom positions.


2000 ◽  
Vol 15 (5) ◽  
pp. 1037-1040 ◽  
Author(s):  
N. Q. Chinh ◽  
F. Csikor ◽  
Zs. Kovács ◽  
J. Lendvai

Plastic instabilities were investigated by the depth-sensing microhardness test in binary high-purity Al–Mg alloys with different Mg contents. During the tests the applied load was increased from 0 to 2000 mN at constant loading rate. The instabilities appeared as characteristic steps in the load–depth curves during indentation. It was shown that the occurrence and development of the plastic instabilities depend strongly on the solute content. Furthermore, the plastic instabilities occurred only when the solute concentration was larger than a critical value, C0. From room-temperature tests on Al–Mg alloys, C0 was found to be 0.86 wt% Mg. The critical concentration, which is necessary to get plastic instabilities, was also interpreted theoretically.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yusuke Hiejima ◽  
Takumitsu Kida ◽  
Koh-hei Nitta

AbstractIn situ Raman spectroscopy is applied for polyethylene solid under various environments to elucidate the morphological and conformational changes. The trans conformation retains up to higher temperature for high-density polyethylene, reflecting higher stability of the orthorhombic crystals composed of stacked trans chains. It is suggested that the conversion of the non-crystalline trans chains to the crystalline phase is the microscopic origin of thermal history in the crystallinity, whereas the transformation between the trans and gauche conformers is practically in thermal equilibrium. Microscopic and dynamic mechanism of deformation during uniaxial stretching is investigated for the molecular orientation and the microscopic load sharing on the crystalline and amorphous chains. Lower crystallinity results in smoother and higher orientation toward the stretching direction, as well as higher load on the amorphous chains, during tensile elongation.


Polymer ◽  
2004 ◽  
Vol 45 (12) ◽  
pp. 4241-4248 ◽  
Author(s):  
Xiaozhen Yang ◽  
Shuhui Kang ◽  
Yuning Yang ◽  
Kaoru Aou ◽  
Shaw Ling Hsu

Sign in / Sign up

Export Citation Format

Share Document