scholarly journals Temporal Gene Expression Profiling of the Wheat Leaf Rust Pathosystem Using cDNA Microarray Reveals Differences in Compatible and Incompatible Defence Pathways

2007 ◽  
Vol 2007 ◽  
pp. 1-13 ◽  
Author(s):  
Bourlaye Fofana ◽  
Travis W. Banks ◽  
Brent McCallum ◽  
Stephen E. Strelkov ◽  
Sylvie Cloutier

In this study, we detail the construction of a custom cDNA spotted microarray containing 7728 wheat ESTs and the use of the array to identify host genes that are differentially expressed upon challenges with leaf rust fungal pathogens. Wheat cultivar RL6003 (Thatcher Lr1) was inoculated with Puccinia triticina virulence phenotypes BBB (incompatible) or TJB (7-2) (compatible) and sampled at four different time points (3, 6, 12, and 24 hours) after inoculation. Transcript expression levels relative to a mock treatment were measured. One hundred ninety two genes were found to have significantly altered expression between the compatible and incompatible reactions. Among those were genes involved in photosynthesis, the production of reactive oxygen species, ubiquitination, signal transduction, as well as in the shikimate/phenylpropanoid pathway. These data indicate that various metabolic pathways are affected, some of which might be used by RL6003 to mount a coordinated defense against an incompatible fungal pathogen.

2016 ◽  
Vol 106 (4) ◽  
pp. 380-385 ◽  
Author(s):  
J. A. Kolmer ◽  
M. A. Acevedo

Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya, from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. Single-uredinial isolates were derived and tested for virulence phenotype to 20 lines of Thatcher wheat that differ for single leaf rust resistance genes and for molecular genotypes with 10 simple sequence repeat (SSR) primers. Nine virulence phenotypes were described among the 193 isolates tested for virulence. Phenotype BBBQJ, found only in Ethiopia, was predominantly collected from tetraploid wheat. Phenotype EEEEE, also found only in Ethiopia, was exclusively collected from tetraploid wheat and was avirulent to the susceptible hexaploid wheat ‘Thatcher’. Phenotypes MBDSS and MCDSS, found in both Ethiopia and Kenya, were predominantly collected from common wheat. Phenotypes CCMSS, CCPSS, and CBMSS were found in Ethiopia from common wheat at low frequency. Phenotypes TCBSS and TCBSQ were found on durum wheat and common wheat in Kenya. Four groups of distinct SSR genotypes were described among the 48 isolates genotyped. Isolates with phenotypes BBBQJ and EEEEE were in two distinct SSR groups, and isolates with phenotypes MBDSS and MCDSS were in a third group. Isolates with CCMSS, CCPSS, CBMSS, TCBSS, and TCBSQ phenotypes were in a fourth SSR genotype group. The diverse host environment of Ethiopia has selected and maintained a genetically divergent population of P. triticina.


2013 ◽  
Vol 41 (2) ◽  
pp. 121-133
Author(s):  
Nour El-Din Soliman ◽  
Magdy Saber ◽  
Alaa Abd-Elaziz ◽  
Ibrahim Imbabi

2008 ◽  
Vol 21 (12) ◽  
pp. 1515-1527 ◽  
Author(s):  
Melvin D. Bolton ◽  
James A. Kolmer ◽  
Wayne W. Xu ◽  
David F. Garvin

The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. We used the Affymetrix GeneChip Wheat Genome Array to compare transcriptional changes of near-isogenic lines of Thatcher wheat in a compatible interaction, an incompatible interaction conferred by the resistance gene Lr1, and the race-nonspecific response conditioned by Lr34 3 and 7 days postinoculation (dpi) with P. triticina. No differentially expressed genes were detected in Lr1 plants at either timepoint whereas, in the compatible Thatcher interaction, differentially expressed genes were detected only at 7 dpi. In contrast, differentially expressed genes were identified at both timepoints in P. triticina-inoculated Lr34 plants. At 3 dpi, upregulated genes associated with Lr34-mediated resistance encoded various defense and stress-related proteins, secondary metabolism enzymes, and transcriptional regulation and cellular-signaling proteins. Further, coordinated upregulation of key genes in several metabolic pathways that can contribute to increased carbon flux through the tricarboxylic cycle was detected. This indicates that Lr34-mediated resistance imposes a high energetic demand that leads to the induction of multiple metabolic responses to support cellular energy requirements. These metabolic responses were not sustained through 7 dpi, and may explain why Lr34 fails to inhibit the pathogen fully but does increase the latent period.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1079-1084 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, Southeast, California, and the Pacific Northwest, in order to determine the virulence of the wheat leaf rust fungus in 2002. Single uredinial isolates (785 in total) were derived from the wheat leaf rust collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17, Lr30, LrB, Lr10, Lr14a, and Lr18. In the United States in 2002, 52 virulence phenotypes of P. triticina were found. Virulence phenotype MBDS, which is virulent to resistance gene Lr17, was the most common phenotype in the United States. MBDS was found in the Southeast, Great Plains, and the Ohio Valley regions, and also in California. Phenotype MCDS, virulent to Lr17 and Lr26, was the second most common phenotype and occurred in the same regions as MBDS. Virulence phenotype THBJ, which is virulent to Lr16 and Lr26, was the third most common phenotype, and was found in the southern and northern central Great Plains region. Phenotype TLGJ, with virulence to Lr2a, Lr9, and Lr11, was the fourth most common phenotype and was found primarily in the Southeast and Ohio Valley regions. The Southeast and Ohio Valley regions differed from the Great Plains regions for predominant virulence phenotypes, which indicate that populations of P. triticina in those areas are not closely connected. The northern and southern areas of the Great Plains were similar for frequencies of predominant phenotypes, indicating a strong south to north migration of urediniospores.


Plant Disease ◽  
2001 ◽  
Vol 85 (2) ◽  
pp. 159-164 ◽  
Author(s):  
J. E. Watkins ◽  
J. Schimelfenig ◽  
P. S. Baenziger ◽  
K. M. Eskridge

Urediniospore isolates of Puccinia triticina were obtained from wheat leaf collections made in three wheat-growing regions in Nebraska in 1997 and in four regions in 1998. Using 16 Thatcher lines that are near-isogenic for leaf rust resistance, 17 virulence phenotypes were found among 121 single uredinial isolates in 1997, and 42 virulence phenotypes were found among 178 isolates in 1998. The most prevalent phenotype in 1997 was MDRR (virulent on Lr1, 3, 3ka, 10, 11, 18, 23, 24, and 30). In 1998, virulence phenotypes MDRR and MDRM (virulent on Lr1, 3, 3ka, 10, 11, 23, 24, and 30) were the most prevalent. In both years, virulence frequency was above 80% to genes Lr1, 3, 3ka, 10, 11, 23, 24, and 30 and below 21% to Lr2a, 17, and 26. Virulence frequency to Lr2c was 37% in 1997 and 22% in 1998. No virulence was found to Lr9, 16, or 21 in either year. New virulence phenotypes were detected in 1998 that were not found in 1997. In 1998, virulence was less frequent on Lr2a, 2c, 3ka, 18, 24, and 26 and more frequent on Lr17 than in 1997.


2007 ◽  
Vol 8 (4) ◽  
pp. 451-467 ◽  
Author(s):  
GUANGGAN HU ◽  
ROB LINNING ◽  
BRENT MCCALLUM ◽  
TRAVIS BANKS ◽  
SYLVIE CLOUTIER ◽  
...  

2000 ◽  
Vol 90 (4) ◽  
pp. 427-436 ◽  
Author(s):  
J. A. Kolmer ◽  
J. Q. Liu

Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from Great Britain, Slovakia, Israel, Germany, Australia, Italy, Spain, Hungary, South Africa, Uruguay, New Zealand, Brazil, Pakistan, Nepal, and eastern and western Canada. All single-uredinial isolates derived from the collections were tested for virulence polymorphism on 22 Thatcher wheat lines that are near-isogenic for leaf rust resistance genes. Based on virulence phenotype, selected isolates were also tested for randomly amplified polymorphic DNA (RAPD) using 11 primers. The national collections were placed into 11 groups based on previously established epidemiological zones. Among the 131 single-uredinial isolates, 105 virulence phenotypes and 82 RAPD phenotypes were described. In a modified analysis of variance, 26% of the virulence variation was due to differences in isolates between groups, with the remainder attributable to differences within groups. Of the RAPD variation, 36% was due to differences in isolates between groups. Clustering based on the average virulence distance (simple distance coefficient) within and between groups resulted in eight groups that differed significantly. Collections from Australia-New Zealand, Spain, Italy, and Britain did not differ significantly for virulence. Clustering of RAPD marker differences (1 - Dice coefficient) distinguished nine groups that differed significantly. Collections from Spain and Italy did not differ significantly for RAPD variation, neither did collections from western Canada and South America. Groups of isolates distinguished by avirulent/virulent infection types to wheat lines with resistance genes Lr1, Lr2a, Lr2c, and Lr3 also differed significantly for RAPD distance, showing a general relationship between virulence and RAPD phenotype. The results indicated that on a worldwide level collections of P. triticina differ for virulence and molecular backgrounds.


2017 ◽  
Vol 4 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Yasser M. Shabana ◽  
Mohamed E. Abdalla ◽  
Atef A. Shahin ◽  
Mohammed M. El-Sawy ◽  
Ibrahim S. Draz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document