scholarly journals Use of Nuclear Data Sensitivity and Uncertainty Analysis for the Design Preparation of the HCLL Breeder Blanket Mockup Experiment for ITER

2008 ◽  
Vol 2008 ◽  
pp. 1-5
Author(s):  
I. Kodeli

An experiment on a mockup of the test blanket module based on helium-cooled lithium lead (HCLL) concept will be performed in 2008 in the Frascati Neutron Generator (FNG) in order to study neutronics characteristics of the module and the accuracy of the computational tools. With the objective to prepare and optimise the design of the mockup in the sense to provide maximum information on the state-of-the-art of the cross-section data the mockup was pre-analysed using the deterministic codes for the sensitivity/uncertainty analysis. The neutron fluxes and tritium production rate (TPR), their sensitivity to the underlying basic cross-sections, as well as the corresponding uncertainties were calculated using the deterministic transport codes (DOORS package), the sensitivity/uncertainty code package SUSD3D, and the VITAMINJ/ COVA covariance matrix libraries. The cross-section reactions with largest contribution to the uncertainty of the calculated TPR were identified to be (n,2n) and (n,3n) reactions on lead. The conclusions of this work support the main benchmark design and suggest some modifications and improvements. In particular this study recommends the use, as far as possible, of both natural and enriched lithium pellets for the TRP measurements. The combined use is expected to provide additional and complementary information on the sensitive cross-sections.

2009 ◽  
Vol 1 (2) ◽  
pp. 173-181 ◽  
Author(s):  
M. M. Haque ◽  
M. T. Islam ◽  
M. A. Hafiz ◽  
R. U. Miah ◽  
M. S. Uddin

The cross sections of Ge isotopes were measured with the activation method at 14.8 MeV neutron energy. The quasi-monoenergetic neutron beams were produced via the 3H(d,n)4He reaction at the 150 kV J-25 neutron generator of INST, AERE. The characteristics γ-lines of the product nuclei were measured with a closed end coaxial 17.5 cm2 high purity germanium (HPGe) detector gamma ray spectroscopy. The cross sections were determined with reference to the known 27Al(n,α)24Na reaction. Cross section data are presented for 72Ge(n,p)72Ga, 74Ge(n,α)71mZn and 76Ge(n,2n)75m+gGe reactions. The cross section values obtained for the above reactions were 24.78±1.75 mb, 1.69±0.11 mb and 860±50 mb, respectively. The results obtained were compared with the values reported in literature as well as theoretical calculation performed by the statistical code SINCROS-II. The experimental data were found fairly in good agreement with the calculated and literature data.  Keywords: Activation cross section; Neutron induced reaction; Gamma-ray spectroscopy; 14.8 MeV. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i2.1532  


2020 ◽  
Vol 29 (08) ◽  
pp. 2050052
Author(s):  
Dashty T. Akrawy ◽  
Ali H. Ahmed ◽  
E. Tel ◽  
A. Aydin ◽  
L. Sihver

An empirical formula to calculate the ([Formula: see text], [Formula: see text] reaction cross-sections for 14.5[Formula: see text]MeV neutrons for 183 target nuclei in the range [Formula: see text] is presented. Evaluated cross-section data from TENDL nuclear data library were used to test and benchmark the formula. In this new formula, the nonelastic cross-section term is replaced by the atomic number [Formula: see text], while the asymmetry parameter-dependent exponential term has been retained. The calculated results are presented in comparison with the seven previously published formulae. We show that the new formula is significantly in better agreement with the measured values compared to previously published formulae.


1986 ◽  
Vol 23 (A) ◽  
pp. 113-125 ◽  
Author(s):  
P. M. Robinson

Dynamic stationary models for mixed time series and cross-section data are studied. The models are of simple, standard form except that the unknown coefficients are not assumed constant over the cross-section; instead, each cross-sectional unit draws a parameter set from an infinite population. The models are framed in continuous time, which facilitates the handling of irregularly-spaced series, and observation times that vary over the cross-section, and covers also standard cases in which observations at the same regularly-spaced times are available for each unit. A variety of issues are considered, in particular stationarity and distributional questions, inference about the parameter distributions, and the behaviour of cross-sectionally aggregated data.


2021 ◽  
Vol 247 ◽  
pp. 09018
Author(s):  
Michal Kostal ◽  
Tomas Czakoj ◽  
Evzen Losa ◽  
Martin Schulc ◽  
Vlastimil Juříček ◽  
...  

The cross section is a fundamental quantity which affects the accuracy of Monte Carlo simulations widely used in nuclear applications. A new dosimetry library IRDFF-II that contains cross section evaluations that include full uncertainty quantification is being developed by the International Atomic Energy Agency and expected to be released in January 2020; a preliminary version IRDFF-1.05 was released in 2014 and is being tested in this work. Validation of the cross-section evaluations proposed for this library is a high priority task. The validation can be realized using integral cross sections measured in standard and/or reference neutron benchmark fields. Integral quantities feature significantly lower uncertainties than differential nuclear data. If the neutron spectrum where the cross section is measured is well characterized, then the Spectrum Averaged Cross Section can be used for validating of existing evaluations.


1986 ◽  
Vol 23 (A) ◽  
pp. 113-125
Author(s):  
P. M. Robinson

Dynamic stationary models for mixed time series and cross-section data are studied. The models are of simple, standard form except that the unknown coefficients are not assumed constant over the cross-section; instead, each cross-sectional unit draws a parameter set from an infinite population. The models are framed in continuous time, which facilitates the handling of irregularly-spaced series, and observation times that vary over the cross-section, and covers also standard cases in which observations at the same regularly-spaced times are available for each unit. A variety of issues are considered, in particular stationarity and distributional questions, inference about the parameter distributions, and the behaviour of cross-sectionally aggregated data.


2005 ◽  
Vol 20 (13) ◽  
pp. 2781-2793 ◽  
Author(s):  
MARTIN M. BLOCK ◽  
KYUNGSIK KANG

The purpose of this paper is to show that the cross-section factorization relation σnn(s)/σγp(s) = σγp(s)/σγγ(s) is satisfied experimentally in the energy domain [Formula: see text], where the σ's are total cross-sections and nn denotes the even portion of the pp and [Formula: see text] total cross-section. A convenient phenomenological parametrization for a global simultaneous fit to the pp, [Formula: see text], γp and γγ total cross-section data together with the ρ-value data for pp and [Formula: see text] is provided by using real analytic amplitudes. Within experimental errors, we show that factorization is satisfied when we unfold the published γγ data which had averaged the cross-sections obtained by using the two different PHOJET and PYTHIA Monte Carlo results. Our analysis clearly favors the PHOJET results and suggests that the additive quark model, together with vector meson dominance, allows one to compute σγp(s) and σγγ(s) from σnn(s) with essentially no free parameters. The universal ρ-value predicted by our fit, i.e. ρnn = ργp = ργγ, is compared to the ρ-value obtained by a QCD-inspired analysis of [Formula: see text] and pp data, including the p-air cross-sections from cosmic rays. The ρ-values obtained from the two techniques are essentially indistinguishable in the energy region [Formula: see text], giving us increased confidence in our parametrization of the cross-sections needed for the factorization relation.


Author(s):  
Iman Tarik Al-Alawy ◽  
Raghad Saadoon Mohammed

The use of radioactive Iodine plays an important role in the treatment of some diseases and diagnosis of others, since they have suitable half-life. The radioactivity emitted from the dissolution of radioactive I-123 and I-125, such as the emission of Auger electrons, positrons and gamma rays reduce the spread of these diseases. Therefore, in this work we discuss the Iodine production via indirect reactions. In order to calculate the cross sections of these reactions for the mentioned target elements, we recommended the cross sections for EXFOR library using the recom.m program, which is written in the present work using Matlab-8, the data are taken from different authors. In order to supply accurate databases for different practical purposes such as proton beam energy monitoring, I-123 and I-125 radioisotopes production, we have evaluated the cross section collected from IAEA for EXFOR library measured by different authors of (p,xn), (d,xn) nuclear process. The selected data and our recommended cross sections were developed for practical applications. Since the preliminary overview of the cross section measurements up to 160MeV showed that there are discrepancies between the literature results.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


Author(s):  
Georges Griso ◽  
Larysa Khilkova ◽  
Julia Orlik ◽  
Olena Sivak

AbstractIn this paper, we study the asymptotic behavior of an $\varepsilon $ ε -periodic 3D stable structure made of beams of circular cross-section of radius $r$ r when the periodicity parameter $\varepsilon $ ε and the ratio ${r/\varepsilon }$ r / ε simultaneously tend to 0. The analysis is performed within the frame of linear elasticity theory and it is based on the known decomposition of the beam displacements into a beam centerline displacement, a small rotation of the cross-sections and a warping (the deformation of the cross-sections). This decomposition allows to obtain Korn type inequalities. We introduce two unfolding operators, one for the homogenization of the set of beam centerlines and another for the dimension reduction of the beams. The limit homogenized problem is still a linear elastic, second order PDE.


Sign in / Sign up

Export Citation Format

Share Document