scholarly journals Human Granulocytic Anaplasmosis: First Reported Case in Canada

2009 ◽  
Vol 20 (3) ◽  
pp. e100-e102 ◽  
Author(s):  
Michael D Parkins ◽  
Deirdre L Church ◽  
Xiu Yan Jiang ◽  
Daniel B Gregson

Human granulocytic anaplasmosis (HGA) is a tick-borne rickettsial infection of peripheral blood neutrophils caused byAnaplasma phagocytophilum. While this infection is increasingly recognized as endemic throughout much of the United States, no Canadian cases have been previously described, despite the agent being identified in Canadian ticks. Herein we present a case of HGA acquired in an urban Alberta centre. Canadian physicians must be aware of the possibility of tick-borne rickettsial diseases as etiology of fever in individuals presenting with leukopenia/lymphopenia, thrombocytopenia and elevated transaminases during periods of tick activity. Prompt recognition and treatment are important in minimizing resultant morbidity and mortality.

Author(s):  
Michael L Levin ◽  
Hannah M Stanley ◽  
Kris Hartzer ◽  
Alyssa N Snellgrove

Abstract The Asian longhorned tick, Haemaphysalis longicornis Neumann (Acari: Ixodidae), was recently introduced into the United States and is now established in at least 15 states. Considering its ability for parthenogenetic propagation and propensity for creating high-density populations, there is concern that this tick may become involved in transmission cycles of endemic tick-borne human pathogens. Human granulocytic anaplasmosis (HGA) caused by Anaplasma phagocytophilum is one of the more common tick-borne diseases in the United States, especially in the northeastern and midwestern states. There is considerable geographical overlap between HGA cases and the currently known distribution of H. longicornis, which creates a potential for this tick to encounter A. phagocytophilum while feeding on naturally infected vertebrate hosts. Therefore, we evaluated the ability of H. longicornis to acquire and transmit the agent of HGA under laboratory conditions and compared it to the vector competence of I. scapularis. Haemaphysalis longicornis nymphs acquired the pathogen with the bloodmeal while feeding on infected domestic goats, but transstadial transmission was inefficient and PCR-positive adult ticks were unable to transmit the pathogen to naïve goats. Results of this study indicate that the Asian longhorned tick is not likely to play a significant role in the epidemiology of HGA in the United States.


2015 ◽  
Vol 93 (1) ◽  
pp. 66-72 ◽  
Author(s):  
F. Scott Dahlgren ◽  
Kristen Nichols Heitman ◽  
Casey Barton Behravesh ◽  
Naomi A. Drexler ◽  
Robert F. Massung

2004 ◽  
Vol 11 (5) ◽  
pp. 963-968 ◽  
Author(s):  
Diana G. Scorpio ◽  
Mustafa Akkoyunlu ◽  
Erol Fikrig ◽  
J. Stephen Dumler

ABSTRACT Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils and causes human granulocytic anaplasmosis. Infection induces neutrophil secretion of interleukin-8 or murine homologs and perpetuates infection by recruiting susceptible neutrophils. We hypothesized that antibody blockade of CXCR2 would decrease A. phagocytophilum tissue load by interrupting neutrophil recruitment but would not influence murine hepatic pathology. C3H-scid mice were treated with CXCR2 antiserum or control prior to or on day 14 after infection. Quantitative PCR and immunohistochemistry for A. phagocytophilum were performed and severity of liver histopathology was ranked. Control mice had more infected cells in tissues than the anti-CXCR2-treated group. The histopathological rank was not different between treated and control animals. Infected cells of control mice clustered in tissue more than in treated mice. The results support the hypothesis of bacterial propagation through chemokine induction and confirm that tissue injury is unrelated to A. phagocytophilum tissue load.


2018 ◽  
Vol 6 (5) ◽  
Author(s):  
Sandra Diaz-Sanchez ◽  
Angélica Hernández-Jarguín ◽  
Isabel G. Fernández de Mera ◽  
Pilar Alberdi ◽  
Erich Zweygarth ◽  
...  

ABSTRACTHere, we report the draft genome sequences of isolates ofAnaplasma phagocytophilum,Anaplasma marginale, andAnaplasma ovis. The genomes ofA. phagocytophilum(human),A. marginale(cattle), andA. ovis(goat) isolates from the United States were sequenced and characterized. This is the first report of anA. ovisgenome sequence.


2004 ◽  
Vol 72 (7) ◽  
pp. 3883-3889 ◽  
Author(s):  
Quan Lin ◽  
Yasuko Rikihisa ◽  
Suleyman Felek ◽  
Xueqi Wang ◽  
Robert F. Massung ◽  
...  

ABSTRACT The msp2 and p44 genes encode polymorphic major outer membrane proteins that are considered unique to the intraerythrocytic agent of Anaplasma marginale and the intragranulocytic agent of Anaplasma phagocytophilum, respectively. In the present study, however, we found an msp2 gene in A. phagocytophilum that was remarkably conserved among A. phagocytophilum strains from human granulocytic anaplasmosis (HGA) patients, ticks, and a horse from various regions in the United States, but the gene was different in a sheep isolate from the United Kingdom. The msp2 gene in the A. phagocytophilum strain HZ genome was a single-copy gene and was located downstream of two Ehrlichia chaffeensis omp-1 homologs and a decarboxylase gene (ubiD). The msp2 gene was expressed by A. phagocytophilum in the blood from HGA patients NY36 and NY37 and by A. phagocytophilum isolates from these patients cultured in HL-60 cells at 37°C. The msp2 gene was also expressed in a DBA/2 mouse infected by attaching ticks infected with strain NTN-1 and in a horse experimentally infected by attaching strain HZ-infected ticks. However, the transcript of the msp2 gene was undetectable in A. phagocytophilum strain HZ in SCID mice and Ixodes scapularis ticks infected with strain NTN-1. These results indicate that msp2 is functional in various strains of A. phagocytophilum, and relative expression ratios of msp2 to p44 vary in different infected hosts. These findings may be important in understanding roles that Msp2 proteins play in granulocytic ehrlichia infection and evolution of the polymorphic major outer membrane protein gene families in Anaplasma species.


2006 ◽  
Vol 74 (11) ◽  
pp. 6429-6437 ◽  
Author(s):  
Anthony F. Barbet ◽  
Anna M. Lundgren ◽  
A. Rick Alleman ◽  
Snorre Stuen ◽  
Anneli Bjöersdorff ◽  
...  

ABSTRACT Anaplasma phagocytophilum, a recently reclassified bacteria in the order Rickettsiales, infects many different animal species and causes an emerging tick-borne disease of humans. The genome contains a large number of related genes and gene fragments encoding partial or apparently full-length outer membrane protein MSP2 (P44). Previous data using strains isolated from humans in the United States suggest that antigenic diversity results from RecF-mediated conversion of a single MSP2 (P44) expression site by partially homologous donor sequences. However, whether similar mechanisms operate in naturally infected animal species and the extent of global diversity in MSP2 (P44) are unknown. We analyzed the structure and diversity of the MSP2 (P44) expression site in strains derived from the United States and Europe and from infections of different animal species, including wildlife reservoirs. The results show that a syntenic expression site is present in all strains of A. phagocytophilum investigated. This genomic locus contained diverse MSP2 (P44) variants in all infected animals sampled, and variants also differed at different time points during infection. Although similar variants were found among different populations of U.S. origin, there was little sequence identity between U.S. strain variants (including genomic copies from a completely sequenced U.S. strain) and expression site variants infecting sheep and dogs in Norway and Sweden. Finally, the possibility that combinatorial mechanisms can generate additional diversity beyond the basic donor sequence repertoire is supported by the observation of shared sequence blocks throughout the MSP2 (P44) hypervariable region in reservoir hosts. These data suggest similar genetic mechanisms for A. phagocytophilum variation in all hosts but worldwide diversity of the MSP2 (P44) outer membrane protein.


2007 ◽  
Vol 15 (3) ◽  
pp. 418-424 ◽  
Author(s):  
Diana G. Scorpio ◽  
Christian Leutenegger ◽  
Jeannine Berger ◽  
Nicole Barat ◽  
John E. Madigan ◽  
...  

ABSTRACT Anaplasma phagocytophilum causes human granulocytic anaplasmosis by inducing immunopathologic responses. Its immunodominant Msp2 protein is encoded by a family of >100 paralogs. Msp2 (msp2) expression modulates in the absence of immune pressure, and prolonged in vitro passage modulates in vivo virulence. Because programmed MSP2 expression occurs in Anaplasma marginale, we hypothesized a similar event in A. phagocytophilum in vivo, with specific Msp2 expression triggering immunopathologic injury or clinical manifestations of disease. We examined msp2 transcripts in 11 B6 mice and 6 horses inoculated with low- or high-passage A. phagocytophilum Webster strain. Blood was sequentially obtained through 3 weeks postinfection for msp2 reverse transcription-PCR. Horses were additionally assessed for clinical manifestations, seroconversion, complete blood count, blood chemistry, and cytokine gene transcription. In both species, there was no consistent emergence of msp2 transcripts, and all 22 msp2 variants were detected in both passage groups. Clinical severity was much higher for high-passage-infected than for low-passage-infected horses, preceded by higher levels of blood gamma interferon transcription on day 7. Antibody was first detected on day 7, and all horses seroconverted by day 22, with a trend toward lower antibody titers in low-passage-infected animals. Leukocyte and platelet counts were similar between experimental groups except on day 13, when low-passage-infected animals had more profound thrombocytopenia. These findings corroborate studies with mice, where msp2 diversity did not explain differences in hepatic histopathology, but differ from the paradigm of low-passage A. phagocytophilum causing more significant clinical illness. Alteration in transcription of msp2 has no bearing on clinical disease in horses, suggesting the existence of a separate proinflammatory component differentially expressed with changing in vitro passage.


2007 ◽  
Vol 14 (3) ◽  
pp. 262-268 ◽  
Author(s):  
N. I. Strik ◽  
A. R. Alleman ◽  
A. F. Barbet ◽  
H. L. Sorenson ◽  
H. L. Wamsley ◽  
...  

ABSTRACT Major surface protein 5 (Msp5) of Anaplasma marginale is highly conserved in the genus Anaplasma and the antigen used in a commercially available competitive enzyme-linked immunosorbent assay (cELISA) for serologic identification of cattle with anaplasmosis. This study analyzes the degrees of conservation of Msp5 among various isolates of Anaplasma phagocytophilum and the extent of serologic cross-reactivity between recombinant Msp5 (rMsp5) of Anaplasma marginale and A. phagocytophilum. The msp5 genes from various isolates of A. phagocytophilum were sequenced and compared. rMsp5 proteins of A. phagocytophilum and A. marginale were used separately in an indirect ELISA to detect cross-reactivity in serum samples from humans and dogs infected with A. phagocytophilum and cattle infected with A. marginale. Serum samples were also tested with a commercially available competitive ELISA that uses monoclonal antibody ANAF16C1. There were 100% sequence identities in the msp5 genes among all of the A. phagocytophilum isolates from the United States and a horse isolate from Sweden. Sheep isolates from Norway and dog isolates from Sweden were 99% identical to one another but differed in 17 base pairs from the United States isolates and the horse isolate. Serologic cross-reactivity was identified when serum samples from cattle infected with A. marginale were reacted with rMsp5 of A. phagocytophilum and when serum samples from humans and dogs infected with A. phagocytophilum were reacted with rMsp5 of A. marginale in an indirect-ELISA format. Serum samples from dogs or humans infected with A. phagocytophilum did not cross-react with rMsp5 of A. marginale when tested with the commercially available cELISA. These results suggest that rMsp5 of A. phagocytophilum is highly conserved among United States and European isolates and that serologic distinction between A. phagocytophilum and A. marginale infections cannot be accomplished if rMsp5 from either organism is used in an indirect ELISA.


Sign in / Sign up

Export Citation Format

Share Document