scholarly journals Simple Spectrophotometric Methods for the Determination of Sulfamethaxazole in Pharmaceuticals Using Folinciocalteau and Orcinol as Reagents

2009 ◽  
Vol 6 (2) ◽  
pp. 357-360 ◽  
Author(s):  
G. Vijaya Raja ◽  
C. Bala Sekaran ◽  
D. Winnie Teja ◽  
B. Madhuri ◽  
B. Jayasree

Two simple, sensitive and reproducible spectrophotometric methods (Method A and Method B) were developed for the determination of sulfamethaxazole in bulk and in dosage forms. Method A is based reduction of phosphomolybdic acid present in Folin Ciocalteau reagent by the drug sulfamethaxazole in the presence of sodium carbonate to form a blue colored chromogen having maximum absorption at 760 nm. Method B is based on the diazotization of the drug by sodium nitrite in acidic medium at 5°C followed by coupling with orcinol to form yellow colored species (λmax390 nm). Beer’s law is obeyed in the range of 5-25 μg/mL for method A and 2-10 μg/mL for method B. Results of analysis were validated statistically and by recovery studies. These methods are successfully employed for the determination of sulfamethaxazole in various pharmaceutical preparations and biological fluids.

2010 ◽  
Vol 7 (1) ◽  
pp. 607-613 ◽  
Author(s):  
Baghdad Science Journal

A simple, cheap, fast, accurate, Safety and sensitive spectrophotometric method for the determination of sulfamethaxazole (SFMx), in pure form and pharmaceutical dosage forms. has been described The Method is based on the diazotization of the drug by sodium nitrite in acidic medium at 5Cº followed by coupling with salbutamol sulphate (SBS) drug to form orange color the product was stabilized and measured at 452 nm Beer’s law is obeyed in the concentration range of 2.5-87.5 ?g ml-1 with molar absorptivity of 2.5x104 L mole-1 cm-1. All variables including the reagent concentration, reaction time, color stability period, and sulfamethaxazole /salbutamol ratio were studied in order to optimize the reaction conditions. No interferences were observed Results of analysis were validated statistically and by recovery studies. These methods are successfully employed for the determination of sulfamethaxazole in some pharmaceutical preparations.. The developed method is easy to use and accurate for routine studies relative to HPLC and other techniques.


2005 ◽  
Vol 88 (4) ◽  
pp. 1148-1154 ◽  
Author(s):  
Juan C Rodríguez ◽  
Julia Barciela ◽  
Sagrario García ◽  
Carlos Herrero ◽  
Rosa M Peña

Abstract Multivariate experimental design has been used to optimize 2 flow-injection spectrophotometric methods for the determination of indapamide in pharmaceutical dosage forms, both pure and commercial tablets. The methods are based on the oxidation of this drug with iron (III) in acidic medium and the subsequent formation of an intensive orange-red complex between the liberated iron (II) and 2,2′-bipyridyl or 1,10-phenanthroline reagents. Plackett-Burman designs were applied as a screening method to evaluate the most significant factors with few experiments. Central composite 23+ star designs were performed to evaluate the response surfaces. The methods have been fully validated and were applied successfully to the determination of indapamide in pure and pharmaceutical forms with good accuracy and precision. Therefore, the 2 proposed procedures are simple, inexpensive, and rapid flow methods for the routine determination of indapamide in pharmaceutical preparations.


2005 ◽  
Vol 2 (1) ◽  
pp. 6-14 ◽  
Author(s):  
K. Suvardhan ◽  
S. Ramanaiah ◽  
K. Suresh Kumar ◽  
D. Rekha ◽  
Umayur Bhagan ◽  
...  

Facile and sensitive spectrophotometric methods for the determination of trace and ultra trace amounts of chromium (VI) are described. 4-aminoantipyrine (APP) reacts with 1-naphthol (NPL) in presence of oxidising agent potassium dichromate in acidic medium to produce red coloured product having λmaxof 485 nm. The molar absorptivity and Sandell's sensitivity were 2.07x104l mol-1cm-1and 0.00240 μg/cm2respectively. The colour is stable for more than 6 h. The system obeys Beer's law in the range, 2-18 μg for determination of chromium (VI). The detection limits of chromium (VI) is 0.048 μg mL-1. The method is highly reproducible and has been applied to the analysis of chromium in synthetic, natural water samples and pharmaceutical preparations and the results compared favourably with the reported method.


2019 ◽  
Vol 15 (3) ◽  
pp. 240-248 ◽  
Author(s):  
Dilek Kul

Background: Qualitative and quantitative analysis of atypical antipsychotic drugs used for the treatment of schizophrenia, depression, anxiety, and bipolar disorder obtaining satisfactory results can be ensured by voltammetric techniques. The aim of this review is to present the application of voltammetric techniques developed for the determination of the atypical antipsychotic drugs, which are amisulpride, aripiprazole, clozapine, olanzapine, quetiapine fumarate, risperidone, sertindole, and ziprasidone, in pharmaceutical dosage forms and biological samples. Methods: Studies in the literature published between 2004 and 2017 based on the voltammetric determination of atypical antipsychotic drugs were gathered using scientific databases. The results obtained from these studies were combined and interpreted. Results: oltammetric techniques applied for the sensitive determination of trace amounts of the selected atypical antipsychotic drugs in their pharmaceutical dosage forms and biological fluids were compared. The best analysis conditions were obtained after the optimization of some parameters such as buffer type, pH, and scan rate. For diffusion controlled electrode processes, it was observed that differential pulse and square wave voltammetry methods were generally used for the sensitive quantitative determination of the drugs, whereas stripping methods were used for the adsorption controlled electrode processes. Detection limits were between 1.53×10-3 µM for clozapine and 0.97 µM for risperidone. Conclusion: The electrodes used in the studies showed high selectivity, sensitivity, and good accuracy with precision. The developed methods were also applied to pharmaceutical preparations of the drugs and biological fluids with satisfactory results, without any interference from inactive excipients.


2002 ◽  
Vol 85 (6) ◽  
pp. 1288-1292 ◽  
Author(s):  
Basavaraj S Nagaralli ◽  
Jaldappa Seetharamappa ◽  
Mahaveer B Melwanki ◽  
Kunabevu C Ramesh ◽  
Jathi Keshavayya

Abstract Two simple, sensitive, and accurate spectrophotometric methods are proposed for the determination of levodopa (LD), methyldopa (MD), dopamine hydrochloride (DP), and pyrocatechol (PC) in pure and pharmaceutical preparations. The methods are based on measurement of the absorbances of tris( o-phenanthroline)iron(II) (method A) and tris(bipyridyl)iron(II) (method B) obtained by the oxidation of the catecholamines by iron(III) in the presence of 1,10-phenanthroline and 2,2′-bipyridyl at 510 and 522 nm, respectively. The absorbances were found to increase linearly with increases in the concentrations of the catecholamines, results which were corroborated by the calculated correlation coefficients (0.9990–0.9996). Beer's law was valid over the concentration ranges of 0.04–0.6, 0.06–0.75, 0.06–0.65, and 0.05–0.70 μg/mL in method A and 0.02–1.0, 0.04–1.3, 0.05–1.0, and 0.06–1.1 μg/mL in method B for PC, MD, LD, and DP, respectively. The common excipients and additives did not interfere in their determinations. The proposed methods were successfully applied to the assay of LD, MD, and DP in various dosage forms. The results were validated by statistical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Serife Evrim Kepekci Tekkeli ◽  
Armağan Önal ◽  
Fatemeh Bahadori

This study presents three simple, rapid, and accurate spectrophotometric methods for the determination of Rasagiline (RSG) in pharmaceutical preparations. The determination procedures depend on the reaction of RSG with chloranilic acid for method A, tetrachloro-1,4-benzoquinone for method B, and 7,7,8,8-tetracyanoquinodimethane for method C. The colored products were quantitated spectrophotometrically at 524, 535, and 843 nm for methods A, B, and C, respectively. Different variables affecting the reaction were optimized. Linearity ranges of the methods with good correlation coefficients (0.9988–0.9996) were observed as 25–300 µg mL−1, 25–350 µg mL−1, and 50–500 µg mL−1for methods A, B, and C, respectively. The formation of products takes place through different mechanisms. The sites of interaction were confirmed by elemental analysis using IR and1H-NMR spectroscopy. The validation of the methods was carried out in terms of specificity, linearity, accuracy, precision, robustness, limit of detection, and limit of quantitation. No interference was observed from concomitants usually present in dosage forms. The methods were applied successfully to the determination of RSG in pharmaceutical preparations.


2017 ◽  
Vol 56 (2) ◽  
Author(s):  
Jasmin Shah ◽  
M. Rasul Jan ◽  
Inayatullah . ◽  
Sultan Shah

Two simple, sensitive and accurate spectrofluorimetric and spectrophotometric methods have been developed for the determination of sparfloxacin in bulk and pharmaceutical preparations. The proposed methods were based on oxidation of sparfloxacin with Ce (IV) in acidic medium. The spectrophotometric method involved the measurement of unconsumed Ce (IV) concentration at 315 nm. The spectrofluorimetric method based on the measurement of reduced fluorescent Ce (III) at 352 nm after excitation at 250 nm. Different variables affecting the reaction such as concentration and volume of cerium (IV), type and concentration of acidic medium, heating temperature and time were carefully studied and optimized. Under the optimum conditions, linear relationship in the range of 0.02-0.2 μg mL<sup>-1</sup> and 0.02-0.1 μg mL<sup>-1</sup> were obtained using spectrophotometric and spectrofluorimetric methods, respectively. No interferences were observed from the common formulations excipients present in the dosage form of the drug. The proposed methods were successfully applied to the analysis of the investigated drug in pure and pharmaceutical formulations with good accuracy and precision. The recovery percentage ranged from 93-102 ± 1.73-2.66%. The precision of the methods were good; RSD ≤ 2.55%.


Author(s):  
Hind Hadi ◽  
Gufran Salim

A simple, rapid and sensitive spectrophotmetric method for trace determination of salbutamol (SAL) in aqueous solution and in pharmaceutical preparations is described. The method is based on the diazotization coupling reaction of the intended compound with 4-amino benzoic acid (ABA) in alkaline medium to form an intense orange, water soluble dye that is stable and shows maximum absorption at 410 nm. A graph of absorbance versus concentration indicates that Beer’s law is obeyed over the concentration range of 0.5-30 ppm, with a molar absorbtivity 3.76×104 L.mol-1 .cm-1 depending on the concentration of SAL. The optimum conditions and stability of the colored product have been investigated and the method was applied successfully to the determination of SAL in dosage forms.


Author(s):  
Abbas Shebeeb Al-kadumi ◽  
Sahar Rihan Fadhel ◽  
Mohammed Abdullah Ahmed ◽  
Luma Amer Musa

We proposed two simple, rapid, and convenient spectrophotometric methods are described for the determination of Amoxicillin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in first method) and colorimetric determination of the green colored solution for manganite ion at 610 nm formed after reaction of Amoxicillin with potassium permanganate as oxidant agent (in the second method) in basic medium. The working conditions of the methods were investigated and optimized. Beer's law plot showed a good correlation in the concentration range of 5-45 μg/ml. The detection limits and relative standared deviations were (2.573, 2.814 μg/ml) (2.137, 2.498) for the flame emission photometric method and (1.844, 2.016 μg/ml) (1.645,1.932) for colorimetric methods for capsules and suspensions respectively. The methods were successfully applied to the determination of Amoxicillin in capsules and suspensions, and the obtained results were in good agreement with the label claim. No interference was observed from the commonly encountered additives and expectancies.


Sign in / Sign up

Export Citation Format

Share Document