Colorimetric Determination of Amoxicillin in Pure and some Pharmaceutical Formulations Via Reaction with Potassium Permanganate as Oxidant Reagent

Author(s):  
Abbas Shebeeb Al-kadumi ◽  
Sahar Rihan Fadhel ◽  
Mohammed Abdullah Ahmed ◽  
Luma Amer Musa

We proposed two simple, rapid, and convenient spectrophotometric methods are described for the determination of Amoxicillin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in first method) and colorimetric determination of the green colored solution for manganite ion at 610 nm formed after reaction of Amoxicillin with potassium permanganate as oxidant agent (in the second method) in basic medium. The working conditions of the methods were investigated and optimized. Beer's law plot showed a good correlation in the concentration range of 5-45 μg/ml. The detection limits and relative standared deviations were (2.573, 2.814 μg/ml) (2.137, 2.498) for the flame emission photometric method and (1.844, 2.016 μg/ml) (1.645,1.932) for colorimetric methods for capsules and suspensions respectively. The methods were successfully applied to the determination of Amoxicillin in capsules and suspensions, and the obtained results were in good agreement with the label claim. No interference was observed from the commonly encountered additives and expectancies.

2016 ◽  
Vol 13 (2) ◽  
pp. 480-488
Author(s):  
Baghdad Science Journal

We propose two simple, rapid, and convenient spectrophotometric methods which are described for the determination of cephalexin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in the first method) and colorimetric determination of the green colored solution at 610 nm formed after the reaction of cephalexin with potassium permanganate as an oxidant agent (in the second method) in basic medium. The working conditions of the methods are investigated and optimized. Beer's law plot shows a good correlation in the concentration range of 5-40?g ml-1. The detection limits are 2.573,2.814 ?g ml-1 for the flame emission photometric method and 1.844,2.016 ?g ml-1 for colorimetric methods for capsules and suspensions respectively.The methods are successfully applied to the determination of cephalexin in capsules and suspensions, and the obtained results are in good agreement with the label claim. No interference is observed from the commonly encountered additives and excipients.


2007 ◽  
Vol 4 (4) ◽  
pp. 496-501 ◽  
Author(s):  
M. Vamsi Krishna ◽  
D. Gowri Sankar

Simple, rapid and sensitive spectrophotometric procedures were developed for the analysis of Alfuzosin hydrochloride (AFZ) in pure form as well as in pharmaceutical formulations. The methods are based on the reaction of AFZ with nitrite in acid medium to form diazonium ion, which is coupled with ethoxyethylenemaleic ester (Method A) or ethylcyanoacetate (Method B) or acetyl acetone (method C) in basic medium to form azo dyes, showing absorption maxima at 440, 465 and 490 nm respectively. Beer’s law is obeyed in the concentration of 4-20 μg/mL of AFZ for methods A, B and 3-15 μg/mL of AFZ for method C. The molar absorptivity and sandell’s sensitivity of AFZ- ethoxyethylenemaleic ester, AFZ- ethylcyanoacetate and AFZ-acetyl acetone are1.90 × 104, 0.022; 1.93 × 104, 0.021 and 2.67 × 104L mole-1cm-1, 0.015 μg cm-2respectively. The optimum reaction conditions and other analytical parameters were evaluated. The methods were successfully applied to the determination of AFZ in pharmaceutical formulations.


2005 ◽  
Vol 2 (3) ◽  
pp. 199-202 ◽  
Author(s):  
L. D. Srinivas ◽  
P. Ravi Kumar ◽  
B. S. Sastry

Two simple and sensitive Visible spectrophotometric methods (A and B) for the determination of Fexofenadine (FEX) in bulk sample and pharmaceutical formulations are described. Methods A and B are based on the formation of ion-association complex involving carboxylic acid group of FEX and the basic dyes, Safranin-O (SFN-O, method A), methylene blue (MB, method B). The results obtained in the above two methods are reproducible and are statistically validated and found to be suitable for the assay of Fexofenadine in bulk and its pharmaceutical formulations.


2015 ◽  
Vol 1 (2) ◽  
pp. 11 ◽  
Author(s):  
Safwan Mohammad Fraihat

Two spectrophotometric methods were developed for the determination Tadalafil in pharmaceutical preparations. The methods are based on the oxidation reaction with known excess amount of Ce(IV) and estimation of the unreacted amount using Indigo carmine dye (Method A) and in Methylene blue dye  (Method B). the factors affecting the reaction conditions were studied and the absorbance of absorbance of the oxidation reaction products were monitored at 610 and 600 nm for methods A and B respectively. Beer's law is obeyed in the concentration ranges 11 to 50 and 10 to 55 ppm, the limits of detection and quantification are reported. The proposed method was applied to the determination of the drug in pharmaceutical formulations and the results demonstrated that the method is equally accurate, precise and reproducible as the official methods. The validity of method was established by recovery studies with satisfactory results.


2009 ◽  
Vol 6 (2) ◽  
pp. 537-540 ◽  
Author(s):  
Manish Majumder ◽  
B. Gopinath ◽  
Girish Koni ◽  
Sanjeev Kumar Singh

Two new, selective and sensitive visible spectrophotometric methods (method A and B) have been developed for the estimation of tinofovir in bulk and in pharmaceutical preparations. Tinofovir was subjected to acid hydrolysis and this acid hydrolyzed drug was used for the estimation. Method A is based on the reaction with 3-methyl-2-benzothiazolinone hydrazone in the presence of ferric chloride, to form a colored species with a λmaxat 628.5 nm. Method B is based on the reaction with Folin-ciocalteu phenol’s reagent under alkaline condition with a λmaxat 768 nm. Beer’s law is obeyed in the concentration range of 5-40 µg/mL for method A and 2-30 µg/mL for method B, respectively. The methods were extended to pharmaceutical formulations and there was no interference from any common pharmaceutical excepients and diluents. The result of analysis has been validated statistically and by recovery studies.


2020 ◽  
Vol 16 (6) ◽  
pp. 670-686
Author(s):  
Habibur Rahman

Background: Potassium permanganate is a green and versatile industrial oxidizing agent. Due to its high oxidizing ability, it has received considerable attention and has been extensively used for many years for the synthesis, identification, and determination of inorganic and organic compounds. Objective: Potassium permanganate is one of the most applicable oxidants, which has been applied in a number of processes in several industries. Furthermore, it has been widely used in analytical pharmacy to develop analytical methods for pharmaceutically active compounds using chemiluminescence and spectrophotometric techniques. Results: This review covers the importance of potassium permanganate over other common oxidants used in pharmaceuticals and reported its extensive use and analytical applications using direct, indirect and kinetic spectrophotometric methods in different pharmaceutical formulations and biological samples. Chemiluminescent applications of potassium permanganate in the analyses of pharmaceuticals using flow and sequential injection techniques are also discussed. Conclusion: This review summarizes the extensive use of potassium permanganate as a chromogenic and chemiluminescent reagent in the analyses of pharmaceutically active compounds to develop spectrophotometric and chemiluminescence methods since 2000.


Author(s):  
P. V. Lakshmana Rao ◽  
C. Rambabu

Objective: The authors report two simple, accurate and economic spectrophotometric methods A and B for the determination of Itopride hydrochloride in bulk and dosage forms.Methods: The proposed methods are based on the formation of chloroform soluble ion-associates in the presence of acidic dyes namely BPB (Method A) and BCP (Method B) exhibiting lmax at 418 and 418 nm respectively.Results: Beer’s law is found to be obeyed in the concentration range of 2.0-10.0 µg/ml and 2.0-10.0 µg/ml. The molar absorptivities are found to be 1.42x104 and 9.61x103L/mol. cm for methods A and B. These methods are successfully applied for the assay of Itopride hydrochloride in pharmaceutical formulations.


2010 ◽  
Vol 7 (2) ◽  
pp. 487-490
Author(s):  
E. Venumadhav ◽  
P. Sai Praveen ◽  
T. Neha ◽  
P. Bhargavi ◽  
G. Devela Rao

Three simple and sensitive visible spectrophotometric methods (A-C) for the determination of Ethacridine Lactate in pure samples and pharmaceutical formulations are described. They are based on the formation of colored species by treating with Folin-Ciocalteau reagent (Method A, λmax 600nm) or 3-methyl 2-benzathiazolinone hydrazone in the presence of Ferric chloride (Method B, λmax 580 nm), or 1, 10 Phenathroline in presence of Ferric chloride (Method C, λmax 490nm). These methods were extended to the analysis of pharmaceutical preparations and results are compound with the refernce method (USP).


2002 ◽  
Vol 85 (6) ◽  
pp. 1288-1292 ◽  
Author(s):  
Basavaraj S Nagaralli ◽  
Jaldappa Seetharamappa ◽  
Mahaveer B Melwanki ◽  
Kunabevu C Ramesh ◽  
Jathi Keshavayya

Abstract Two simple, sensitive, and accurate spectrophotometric methods are proposed for the determination of levodopa (LD), methyldopa (MD), dopamine hydrochloride (DP), and pyrocatechol (PC) in pure and pharmaceutical preparations. The methods are based on measurement of the absorbances of tris( o-phenanthroline)iron(II) (method A) and tris(bipyridyl)iron(II) (method B) obtained by the oxidation of the catecholamines by iron(III) in the presence of 1,10-phenanthroline and 2,2′-bipyridyl at 510 and 522 nm, respectively. The absorbances were found to increase linearly with increases in the concentrations of the catecholamines, results which were corroborated by the calculated correlation coefficients (0.9990–0.9996). Beer's law was valid over the concentration ranges of 0.04–0.6, 0.06–0.75, 0.06–0.65, and 0.05–0.70 μg/mL in method A and 0.02–1.0, 0.04–1.3, 0.05–1.0, and 0.06–1.1 μg/mL in method B for PC, MD, LD, and DP, respectively. The common excipients and additives did not interfere in their determinations. The proposed methods were successfully applied to the assay of LD, MD, and DP in various dosage forms. The results were validated by statistical analysis.


2017 ◽  
Vol 56 (2) ◽  
Author(s):  
Jasmin Shah ◽  
M. Rasul Jan ◽  
Inayatullah . ◽  
Sultan Shah

Two simple, sensitive and accurate spectrofluorimetric and spectrophotometric methods have been developed for the determination of sparfloxacin in bulk and pharmaceutical preparations. The proposed methods were based on oxidation of sparfloxacin with Ce (IV) in acidic medium. The spectrophotometric method involved the measurement of unconsumed Ce (IV) concentration at 315 nm. The spectrofluorimetric method based on the measurement of reduced fluorescent Ce (III) at 352 nm after excitation at 250 nm. Different variables affecting the reaction such as concentration and volume of cerium (IV), type and concentration of acidic medium, heating temperature and time were carefully studied and optimized. Under the optimum conditions, linear relationship in the range of 0.02-0.2 μg mL<sup>-1</sup> and 0.02-0.1 μg mL<sup>-1</sup> were obtained using spectrophotometric and spectrofluorimetric methods, respectively. No interferences were observed from the common formulations excipients present in the dosage form of the drug. The proposed methods were successfully applied to the analysis of the investigated drug in pure and pharmaceutical formulations with good accuracy and precision. The recovery percentage ranged from 93-102 ± 1.73-2.66%. The precision of the methods were good; RSD ≤ 2.55%.


Sign in / Sign up

Export Citation Format

Share Document