scholarly journals Calculation of the Percentage in High Sulfur Clinker

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Sayed Horkoss ◽  
Roger Lteif ◽  
Toufic Rizk

The aim of this paper is to clarify the influence of the clinker on the amount of . The calculation of the cement phases percentages is based on the research work, Calculation of the Compounds in Portland Cement, published by Bogue in 1929 .The usage of high sulphur fuels, industrial wastes, and tires changes completely the working condition of Bogue because the assumed phase compositions may change. The results prove that increasing the amount of in the low alkali clinker decreases the percentages of due to the high incorporation of alumina in the clinker phases mainly and . The correlation is linear till the clinker reaches the 2%. Over that the influence of the clinker became undetectable. A new calculation method for the determination of the in the high sulphur and low alkali clinker was proposed.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7276
Author(s):  
Wilfrido Martinez-Molina ◽  
Hugo L. Chavez-Garcia ◽  
Tezozomoc Perez-Lopez ◽  
Elia M. Alonso-Guzman ◽  
Mauricio Arreola-Sanchez ◽  
...  

The present research work shows the effect on the carbonation of Portland cement-based mortars (PC) with the addition of green materials, specifically residues from two groups: agricultural and industrial wastes, and minerals and fibres. These materials have the purpose of helping with the waste disposal, recycling, and improving the durability of concrete structures. The specimens used for the research were elaborated with CPC 30R RS, according to the Mexican standard NMX-C-414, which is equivalent to the international ASTM C150. The aggregates were taken from the rivers Lerma and Huajumbaro, in the State of Michoacan, Mexico, and the water/cement relation was 1:1 in weight. The carbonation analyses were performed with cylinder specimens in an accelerated carbonation test chamber with conditions of 65 +/− 5% of humidity and 25 +/− 2 °C temperature. The results showed that depending on the PC substitutions, the carbonation front advance of the specimens can increase or decrease. It is highlighted that the charcoal ashes, blast-furnace slags, and natural perlite helped to reduce the carbonation advance compared to the control samples, consequently, they contributed to the durability of concrete structures. Conversely, the sugarcane bagasse ash, brick manufacturing ash, bottom ash, coal, expanded perlite, metakaolin, and opuntia ficus-indica dehydrated fibres additions increased the velocity of carbonation front, helping with the sequestration of greenhouse gases, such as CO2, and reducing environmental pollution.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


2014 ◽  
Vol 698 ◽  
pp. 466-471
Author(s):  
Oleg V. Panchenko ◽  
Alexey M. Levchenko ◽  
Victor A. Karkhin

Specimens of various sizes are used to determine hydrogen content in deposited metals in such standards as ISO 3690, AWS A 4.3, and GOST 23338 while measuring methods are the same. It causes problems in comparison of experimental results and brings up the following question: what kind of specimen size is optimal to determine hydrogen content? An optimal specimen size was estimated using a calculation method. Experimental and calculation results obtained by using specimens with estimated dimensions were compared to the results obtained by using the specimen with dimensions of 100*25*8 mm to determine hydrogen content in a deposited metal.


2012 ◽  
Vol 504-506 ◽  
pp. 863-868 ◽  
Author(s):  
Miklos Tisza ◽  
Péter Zoltán Kovács ◽  
Zsolt Lukács

Development of new technologies and processes for small batch and prototype production of sheet metal components has a very important role in the recent years. The reason is the quick and efficient response to the market demands. For this reasons new manufacturing concepts have to be developed in order to enable a fast and reliable production of complex components and parts without investing in special forming machines. The need for flexible forming processes has been accelerated during the last 15 years, and by these developments the technology reaches new extensions. Incremental sheet metal forming (ISMF) may be regarded as one of the promising developments for these purposes. A comprehensive research work is in progress at the University of Miskolc (Hungary) to study the effect of important process parameters with particular emphasis on the shape and dimensional accuracy of the products and particularly on the formability limitations of the process. In this paper, some results concerning the determination of forming limit diagrams for single point incremental sheet metal forming will be described.


2017 ◽  
Vol 750 ◽  
pp. 45-52
Author(s):  
Sveto Cvetkovski

The heat input during conventional arc welding processes can be readily calculated knowing the power taken from the power source. The efficiency coefficient can be taken from the appropriate literature standards. Here, the intention of the performed research work was to develop a procedure for determination of heat input in arc and laser welding processes implementing Adams equation - modified Rykalin equation for two dimensional heat distributions (2-D). To realize this idea, it is necessary to determine two characteristic temperatures points in the HAZ with known peak temperature, and to determine distance between them. Implementing measured values for distance in Adams’ equation, heat input in arc welding can be directly determined in arc welded joints.In laser beam welding, the absorption of the beam in the metal is not known, so that the welding heat input cannot be calculated directly, and direct implementation of Adam’s equation is not possible i.e. absorption coefficient has to be determined first, and after that calculation of heat input is possible.The peak temperatures corresponding to specific microstructures can be obtained by performing welding simulation, by the Gleeble 1500 simulator in our case. As one of the peak temperatures, the melting temperature can be used corresponding to the fusion line, so that at least one characteristic peak temperature such as coarse grain zone, fine grin zone, intercritical zone, recrystallization, has to be determined by the simulation.Performed research showed that obtained values for heat input using Adam’s equation correspond pretty well with standard equation for heat input in arc welding.


Sign in / Sign up

Export Citation Format

Share Document