scholarly journals Cytokine Overproduction, T-Cell Activation, and Defective T-Regulatory Functions Promote Nephritis in Systemic Lupus Erythematosus

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Marco Tucci ◽  
Stefania Stucci ◽  
Sabino Strippoli ◽  
Francesco Silvestris

Lupus nephritis (LN) occurs in more than one-third of patients with systemic lupus erythematosus. Its pathogenesis is mostly attributable to the glomerular deposition of immune complexes and overproduction of T helper- (Th-) 1 cytokines. In this context, the high glomerular expression of IL-12 and IL-18 exerts a major pathogenetic role. These cytokines are locally produced by both macrophages and dendritic cells (DCs) which attract other inflammatory cells leading to maintenance of the kidney inflammation. However, other populations including T-cells and B-cells are integral for the development and worsening of renal damage. T-cells include many pathogenetic subsets, and the activation of Th-17 in keeping with defective T-regulatory (Treg) cell function regards as further event contributing to the glomerular damage. These populations also activate B-cells to produce nephritogenic auto-antibodies. Thus, LN includes a complex pathogenetic mechanism that involves different players and the evaluation of their activity may provide an effective tool for monitoring the onset of the disease.

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1433 ◽  
Author(s):  
Chuang ◽  
Tan

T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE), which is a severe autoimmune disease. In the past 60 years, only one new therapeutic agent with limited efficacy has been approved for SLE treatment; therefore, the development of early diagnostic biomarkers and therapeutic targets for SLE is desirable. Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and dual-specificity phosphatases (DUSPs) are regulators of MAP kinases. Several MAP4Ks and DUSPs are involved in T-cell signaling and autoimmune responses. HPK1 (MAP4K1), DUSP22 (JKAP), and DUSP14 are negative regulators of T-cell activation. Consistently, HPK1 and DUSP22 are downregulated in the T cells of human SLE patients. In contrast, MAP4K3 (GLK) is a positive regulator of T-cell signaling and T-cell-mediated immune responses. MAP4K3 overexpression-induced RORγt–AhR complex specifically controls interleukin 17A (IL-17A) production in T cells, leading to autoimmune responses. Consistently, MAP4K3 and the RORγt–AhR complex are overexpressed in the T cells of human SLE patients, as are DUSP4 and DUSP23. In addition, DUSPs are also involved in either human autoimmune diseases (DUSP2, DUSP7, DUSP10, and DUSP12) or T-cell activation (DUSP1, DUSP5, and DUSP14). In this review, we summarize the MAP4Ks and DUSPs that are potential biomarkers and/or therapeutic targets for SLE.


1980 ◽  
Vol 23 (9) ◽  
pp. 1004-1009 ◽  
Author(s):  
Alejandro Ruiz-Arguelles ◽  
Donato Alarcón-Segovia ◽  
Luis Llorente ◽  
JOSéa Del Guidice-Knipping

2016 ◽  
Vol 113 (33) ◽  
pp. 9321-9326 ◽  
Author(s):  
Denis Comte ◽  
Maria P. Karampetsou ◽  
Katalin Kis-Toth ◽  
Nobuya Yoshida ◽  
Sean J. Bradley ◽  
...  

Signaling lymphocytic activation molecule family 3 (SLAMF3/Ly9) is a coregulatory molecule implicated in T-cell activation and differentiation. Systemic lupus erythematosus (SLE) is characterized by aberrant T-cell activation and compromised IL-2 production, leading to abnormal regulatory T-cell (Treg) development/function. Here we show that SLAMF3 functions as a costimulator on CD4+ T cells and influences IL-2 response and T helper cell differentiation. SLAMF3 ligation promotes T-cell responses to IL-2 via up-regulation of CD25 in a small mothers against decapentaplegic homolog 3 (Smad3)-dependent mechanism. This augments the activation of the IL-2/IL-2R/STAT5 pathway and enhances cell proliferation in response to exogenous IL-2. SLAMF3 costimulation promotes Treg differentiation from naïve CD4+ T cells. Ligation of SLAMF3 receptors on SLE CD4+ T cells restores IL-2 responses to levels comparable to those seen in healthy controls and promotes functional Treg generation. Taken together, our results suggest that SLAMF3 acts as potential therapeutic target in SLE patients by augmenting sensitivity to IL-2.


2019 ◽  
Author(s):  
xie changhao ◽  
Yang Lu ◽  
Qingqing Zhu ◽  
Yun Li ◽  
Qiyi Wang ◽  
...  

Abstract Background: The binding of programmed death 1 (PD-1) with its ligands inhibits the T cell activation and proliferation. But role of the PD-1 pathway on B cells is unclear. In present study, we aimed to evaluate the expression of PD-1 on B cells and their subpopulations and association with clinical parameters in systemic lupus erythematosus (SLE).Results: The frequency of B cells increased significantly in patients with active SLE compared with healthy controls and patients with inactive SLE.The proportions of CD19+ IgD- CD27- cells andplasmablast cell among total B cells were significantly higher in patients with SLE compared with controls. The percentage of PD-1+ B cells was higher in patients with in active SLE than in healthy controls. The proportion of PD-1+ B cells was correlated with lupus nephritis, complement components, IgG, SLE Disease Activity Index, and autoantibodies. PD-1+ B cells from SLE showed a high proliferative response. The levels of IgG and anti-dsDNA secreted by PD-1+ B cells from SLE patients was higher after 7 days compared with that by PD-1- B cells from patients with SLE and healthy controls.Conclusions: The expression of PD-1 on B cells and their subpopulations was aberrant and was associated with clinical parameters in SLE.KEY WORDS:PD-1; B cells; subpopulation; systemic lupus erythematosus


1990 ◽  
Vol 172 (2) ◽  
pp. 653-656 ◽  
Author(s):  
T Mimura ◽  
P Fernsten ◽  
W Jarjour ◽  
J B Winfield

Nearly one-third of IgM antilymphocyte autoantibody-positive sera from patients with systemic lupus erythematosus (SLE) contain IgM antibodies to one or more 180-220-kD molecules (p180, p190, p205, and p220) in blots of glycoproteins purified from T cells by wheat germ agglutinin affinity chromatography. Identity of these IgM targets with multiple isoforms of CD45 was established by their specific depletion from T cell glycoproteins by immunoprecipitation with T191, a monoclonal antibody (mAb) that reacts with an epitope common to all CD45 isoforms. Although the anti-CD45 autoantibodies recognize higher molecular weight isoforms primarily, antigenic specificity in this system is quite heterogeneous and includes multiple distinct CD45 isoforms on different types of T cells that are, at least in part, different from those reactive with mAbs 2H4 and UCHL-1. Because CD45 is a major membrane protein tyrosine phosphatase that plays a critical role in antigen-induced T cell activation, the present data may be relevant to some of the antilymphocyte antibody-mediated immunologic abnormalities that characterize SLE and related autoimmune diseases.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 230.2-231
Author(s):  
A. Pappalardo ◽  
E. Wojciechowski ◽  
I. Odriozola ◽  
I. Douchet ◽  
N. Merillon ◽  
...  

Background:Neutrophils have been described as potent antigen-presenting cells able to activate T cells by MHC/TCR interaction and costimulatory molecules in tumor immunity. However, little is known about the direct interaction between neutrophils and CD4 T cells with respect to systemic lupus erythematosus (SLE). We have previously shown that OX40L expressed by monocytes from SLE patients promote the differentiation of naïve and memory cells into IL21 secreting T cells that are able to help B cells1,2.Objectives:In this study, we investigate OX40L expression on neutrophils from SLE patients and contribution of these OX40L+neutrophils in SLE pathogenesis to modulation of the B cell helper role of CD4 T cells.Methods:Surface expression of co-stimulatory molecules (OX40L, ICOSL, GITRL, 4-1BBL) on neutrophils from SLE patients and healthy donors (HD) was measured by flow cytometry (FC). Neutrophils from HD were stimulated with TLR7 or TLR8 agonists and IFNα after 5 hours of culture, OX40L expression was measured by FC and Western Blotting. CD4 T cells were cultured with the stimulated neutrophils for 3 days. At the end of the co-culture, percentages of IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated T cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and Ig levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.Results:Among the co-stimulatory molecules tested, percentages of OX40L+neutrophils in SLE (n=54) were increased compared to HD (n=25)(mean + SD: HD = 1,34%±1.62 vs SLE = 4,53%±8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0,04; r = 0,31) and with anti-DNA antibodies (p= 0,04, r = 0,33). Of note, the percentage of OX40L+neutrophils was higher in anti-sm-RNP+patients (n=16, mean= 9%±9.8), compared to anti-sm-RNP-patients (n=27, mean = 1,4%±2.5; p = 0,02). The percentage of OX40L+neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or IFNα priming followed by TLR7 agonist. When memory CD4 T cells were cultured in the presence of TLR8-stimulated neutrophils, the proportion of IL21-expressing Tfh (CXCR5+PD1+) and Tph (CXCR5-PD1hi) were increased, compared to culture with unstimulated neutrophils. This process was dependent on OX40-OX40L interactions, since in vitro treatment with the anti-OX40 blocking antibody ISB 830, inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.Conclusion:Our results disclose an unprecedented phenomenon where cross-talk between TLR7/8-activated neutrophils and CD4 lymphocytes operates through OX40L-OX40 costimulation, and neutrophils promote the differentiation of pro-inflammatory Tfh and Tph, as well as IL21 production. Therefore, OX40L/OX40 should be considered as a potentially therapeutic axis in SLE patients.References:[1]Jacquemin et al. Immunity 2015;[2]Jacquemin et al. JCI Insight 2018Disclosure of Interests:Angela Pappalardo Grant/research support from: Ichnos Sciences, Elodie Wojciechowski: None declared, Itsaso Odriozola: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Estibaliz Lazaro: None declared, Marie-Agnes Doucey Employee of: Ichnos Sciences, Lamine Mbow Employee of: Ichnos Sciences, Christophe Richez Consultant of: Abbvie, Amgen, Mylan, Pfizer, Sandoz and UCB., Patrick Blanco Grant/research support from: Ichnos Sciences


2015 ◽  
Vol 182 (1) ◽  
pp. 1-13 ◽  
Author(s):  
J. P. Mackern-Oberti ◽  
J. Obreque ◽  
G. P. Méndez ◽  
C. Llanos ◽  
A. M. Kalergis

Sign in / Sign up

Export Citation Format

Share Document