scholarly journals A New Generating Function of (q-) Bernstein-Type Polynomials and Their Interpolation Function

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Yilmaz Simsek ◽  
Mehmet Acikgoz

The main object of this paper is to construct a new generating function of the (q-) Bernstein-type polynomials. We establish elementary properties of this function. By using this generating function, we derive recurrence relation and derivative of the (q-) Bernstein-type polynomials. We also give relations between the (q-) Bernstein-type polynomials, Hermite polynomials, Bernoulli polynomials of higher order, and the second-kind Stirling numbers. By applying Mellin transformation to this generating function, we define interpolation of the (q-) Bernstein-type polynomials. Moreover, we give some applications and questions on approximations of (q-) Bernstein-type polynomials, moments of some distributions in Statistics.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Serkan Araci ◽  
Sameh S. Ahmed

Abstract Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new type degenerate Bernoulli numbers and polynomials by making use of degenerate logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we consider a special class of polynomials, which we call a new type of degenerate Daehee numbers and polynomials of the second kind. By using their generating function, we derive some new relations including the degenerate Stirling numbers of the first and second kinds. Moreover, we introduce a new type of higher-order degenerate Daehee polynomials of the second kind. We also derive some new identities and properties of this type of polynomials.



Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran

In the present work, a new extension of the two-variable Fubini polynomials is introduced by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini polynomials. Then, some useful relations including the Stirling numbers of the second and the first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived. Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the unipoly function, and diverse properties involving integral and derivative properties are attained. Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling numbers of the second and the first kinds, and the Daehee polynomials are acquired.



2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Aimin Xu

We employ the generalized factorials to define a Stirling-type pair{s(n,k;α,β,r),S(n,k;α,β,r)}which unifies various Stirling-type numbers investigated by previous authors. We make use of the Newton interpolation and divided differences to obtain some basic properties of the generalized Stirling numbers including the recurrence relation, explicit expression, and generating function. The generalizations of the well-known Dobinski's formula are further investigated.



Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.



Author(s):  
Feng Qi ◽  
Jiao-Lian Zhao ◽  
Bai-Ni Guo

In the paper, the authors find closed forms for derangement numbers in terms of the Hessenberg determinants, discover a recurrence relation of derangement numbers, present a formula for any higher order derivative of the exponential generating function of derangement numbers, and compute some related Hessenberg and tridiagonal determinants.



Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we derive multifarious relationships among the two types of higher order q-Daehee polynomials and p-adic gamma function via Mahler theorem. Also, we compute some weighted p-adic q-integrals of the derivative of p-adic gamma function related to the Stirling numbers of the both kinds and the q-Bernoulli polynomials of order k.



Author(s):  
Feng Qi ◽  
Dongkyu Lim ◽  
Bai-Ni Guo

In the paper, the authors establish two identities, which can be regarded as nonlinear differential equations, for the generating function of Eulerian polynomials, find two identities for the Stirling numbers of the second kind, and present two identities for Eulerian polynomials and higher order Eulerian polynomials, pose two open problems about summability of two finite sums involving the Stirling numbers of the second kind. Some of these conclusions meaningfully and significantly simplify several known results.



Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 779 ◽  
Author(s):  
Fusun Yalcin ◽  
Yilmaz Simsek

The main aim of this paper is to define and investigate a new class of symmetric beta type distributions with the help of the symmetric Bernstein-type basis functions. We give symmetry property of these distributions and the Bernstein-type basis functions. Using the Bernstein-type basis functions and binomial series, we give some series and integral representations including moment generating function for these distributions. Using generating functions and their functional equations, we also give many new identities related to the moments, the polygamma function, the digamma function, the harmonic numbers, the Stirling numbers, generalized harmonic numbers, the Lah numbers, the Bernstein-type basis functions, the array polynomials, and the Apostol–Bernoulli polynomials. Moreover, some numerical values of the expected values for the logarithm of random variable are given.



2020 ◽  
Author(s):  
Feng Qi

In the paper, by virtue of the Faa di Bruno formula and several properties of the Bell polynomials of the second kind, the author computes higher order derivatives of the generating function of convolved Fibonacci numbers and, consequently, derives three closed forms for convolved Fibonacci numbers in terms of the falling and rising factorials, the Lah numbers, the signed Stirling numbers of the first kind, and the golden ratio.



Sign in / Sign up

Export Citation Format

Share Document