scholarly journals Theoretical Evaluation of Ultrasonic Velocities in Ternary Liquid Mixtures of Dibutylether + Toluene + 1-Alkanols at 303K

2011 ◽  
Vol 8 (1) ◽  
pp. 252-256 ◽  
Author(s):  
T. Sumathi ◽  
K. Abeetha

A comparison of ultrasonic velocity evaluated from Nomoto’s relation, Van Deal-Vangeel ideal mixtures relation, impedance dependence relation and collision factor theories with experimental values have been made in three ternary systems of 1-alkanol with common binary mixture of toluene and dibutylether at 303 K. The relative applicability of these theories to the present systems has been checked and discussed.

2011 ◽  
Vol 8 (3) ◽  
pp. 977-981
Author(s):  
CH. Srinivasu ◽  
K. Narendra ◽  
CH. Kalpana

Theoretical velocities of binary liquid mixtures of anisaldehyde with toluene at 303.15, 308.15, 313.15 and 318.15 K have been evaluated by using theoretical models of liquid mixtures such as Nomoto, Van Dael-Vangeel, Schaff’s collision factor theory and Junjie’s relations. Density and ultrasonic velocity of these mixtures have also been measured as a function of concentration and temperature and the experimental values are compared with the theoretical values. A good agreement has been found between experimental and Nomoto’s theoretical ultrasonic velocities. The results are explained in terms of intermolecular interactions occurring in these binary liquid mixtures.


Author(s):  
N. Santhi ◽  
P.L. Sabarathinam ◽  
J. Madhumitha ◽  
G. Alamelumangai ◽  
M. Emayavaramban

Ultrasonic velocities and densities of the binary liquid mixtures of benzene with 1-propanol, 2-propanol, 1-butanol, 2-butanol and 3-butanol at 303.15 to 318.15 K, over the entire composition range were measured. The theoretical values of ultrasonic velocity were evaluated using the Nomoto’s Relation (NR), Ideal Mixture Relation (IMR), Free Length Theory (FLT) and Collision Factor Theory (CFT). The validity of these relations and theories were tested by comparing the computed sound velocities with experimental values. Further, the molecular interaction parameter (α) was computed by using the experimental and the theoretical ultrasonic velocity values. The variation of this parameter with composition of the mixtures has been discussed in terms of molecular interaction in these mixtures.


Author(s):  
Ch. Praveen Babu ◽  
G. Pavan Kumar ◽  
B. Nagarjun ◽  
K. Samatha

Theoretical velocities of binary liquid mixtures of 1-bromopropane with chlorobenzene at 2 MHz and four different temperatures 303.15, 308.15, 313.15 and 318.15 K, have been evaluated as a function of concentration and temperature. The experimental values are compared with theoretical models of liquid mixtures such as Nomoto, Van Dael-Vangeel, Impedance Relation, Rao’s Specific Velocity Method, Junjie’s relations and Free Length Theory. In the chosen system there is a good agreement between experimental and theoretical values calculated by Nomoto’s theory. The deviation in the variation of U2exp/U2imx from unity has also been evaluated for explaining the non ideality in the mixtures. The results are explained in terms of intermolecular interactions occurring in these binary liquid mixtures.


2010 ◽  
Vol 7 (2) ◽  
pp. 648-654 ◽  
Author(s):  
N. Santhi ◽  
PL. Sabarathinam ◽  
M. Emayavaramban C. Gopi ◽  
C. Manivannan

Ultrasonic velocities and densities of the binary liquid mixtures of dimethy1 sulphoxide (DMSO) with phenol,o-cresol,m-cresol,p-cresol andp-chlorophenol at 318.15 K, over the entire composition range were measured. The theoretical values of ultrasonic velocity were evaluated using the Nomoto’s Relation (NR), Ideal Mixture Relation (IMR), Free Length Theory (FT) and Collision Factor Theory (FLT). The validity of these relations and theories was tested by comparing the computed sound velocities with experimental values. Further, the molecular interaction parameter (α) was computed by using the experimental and the theoretical ultrasonic velocity values. The variation of this parameter with composition of the mixtures has been discussed in terms of molecular interaction in these mixtures.


Author(s):  
M. Durga Bhavani ◽  
A. Ratnakar ◽  
Ch. Kavitha

Ultrasonic velocities calculated from various theories and relations like Nomoto’s relation, Van dael ideal mixing relation, Impedance relation, Rao’s specific velocity relation and Jungie’s theory are compared with experimental values in binary liquid mixtures o-anisidine with o-cresol at temperatures 303.15, 308.15, 313.15 and 318.15 K over the entire mole fraction range. The relative applicability of these theories to the present system is checked and discussed. A good agreement is observed between experimental and theoretical values. The results are explained in the light of molecular interactions occuring in these mixtures.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 602
Author(s):  
A. Gayathri ◽  
T. Venugopal ◽  
K. Venkatramanan

A comparative study of ultrasonic velocities of binary liquid mixtures such as O-cresol+carbon tetrachloride, anisicaldehyde+methylacetate, anisicaldehyde+ethylacetate, having industrial applications are analysed at temperature 303K for different concentrations [0 to 1%]. In the present study experimental values are taken from literature and there values are compared with theoretical values obtained by various mathematical equations such as Nomoto’s relation, VandealVangeal formula, Impedance relation, Rao’s specific relation. Thus, the present study reveals the nature of interaction between component molecules in the mixtures and enables us to identify a suitable mathematical model for predicting the ultrasonic velocity various binary liquid mixtures.    


1989 ◽  
Vol 67 (3) ◽  
pp. 437-441 ◽  
Author(s):  
J. D. Pandey ◽  
R. D. Rai ◽  
R. K. Shukla

Various statistical and empirical theories of ultrasonic velocity have been applied to a binary liquid mixture (benzene + nitrobenzene) at elevated pressures and their validity have been tested. A pressure-dependent study of ultrasonic velocities has been made at three different temperatures (293.15, 303.15, and 313.15 K). The agreement between the theory and experiment is found to be satisfactory. Keywords: ultrasonic velocity, benzene + nitrobenzene, pressure dependent, theoretical evaluation, binary mixtures at elevated pressures.


2009 ◽  
Vol 6 (s1) ◽  
pp. S235-S238 ◽  
Author(s):  
R. Uvarani ◽  
S. Punitha

Theoretical values of ultrasonic velocity in the binary mixtures of cyclohexanone with 2-propanol and 2-methyl-2-propanol have been evaluated at 303 K using Nomoto’s relation, collision factor theory, free length theory, ideal mixture relation, Junjie’s method. Theoretical values are compared with the experimental values and the validity of the theories are checked by applying the chi-square test for goodness of fit and by calculating the average percentage error (APE).


2005 ◽  
Vol 2 (2) ◽  
pp. 157-160 ◽  
Author(s):  
Shipra Baluja ◽  
Nirmal Pandaya ◽  
Nikunj Kachhadia ◽  
Asif Solanki

The density and refractive index (RI) for four binary liquid mixtures: diethyl malonate + dimethylformamide (DEM+DMF), diethyl malonate + Hexane (DEM+HEX), diethyl malonate + tetrahydrofuran (DEM+THF), diethyl malonate + 1,4-dioxane (DEM+DO) have been measured. The experimental values are compared with those calculated from Lorentz-Lorentz, Heller, Newton and Gladstone -Dale mixing rules.


Sign in / Sign up

Export Citation Format

Share Document