scholarly journals Impacts of Sewage Sludge in Tropical Soil: A Case Study in Brazil

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Wagner Bettiol ◽  
Raquel Ghini

A long-term assay was conducted to evaluate the environmental impacts of agriculture use of sewage sludge on a tropical soil. This paper describes and discusses the results obtained by applying a interdisciplinary approach and the valuable insights gained. Experimental site was located in Jaguariúna (SP, Brazil). Multiyear comparison was developed with the application of sewage sludge obtained from wastewater treatment plants at Barueri (domestic and industrial sewage) and Franca (domestic sewage), São Paulo State. The treatments were control, mineral fertilization, and sewage sludge applied based on the N concentration that provides the same amount of N as in the mineral fertilization recommended for corn crop, two, four, and eight times the N recommended dosage. The results obtained indicated that the amount of sewage sludge used in agricultural areas must be calculated based on the N crop needs, and annual application must be avoided to prevent overapplications.

FLORESTA ◽  
2019 ◽  
Vol 49 (3) ◽  
pp. 485
Author(s):  
Lívia Mara Lima Goulart ◽  
Marianne Fidalgo de Faria ◽  
Grasiela Spada ◽  
Thiago Tássio de Souza Silva ◽  
Iraê Amaral Guerrini

The use of sewage sludge in agriculture and recovery of degraded areas has been shown as a promising alternative for its final destination. Studies on micronutrient levels after sludge application are necessary to avoid soil contamination at toxic levels. The objective of this work was to verify the micronutrient contents in the soil profile and pH, up to one-meter-deep, nine years after the application of sewage sludge and planting of native species of the Atlantic Forest. The experiment was implemented in a degraded Quartzeneic Neosol and conducted in randomized blocks with four replicates and eight treatments, consisting of six doses of sewage sludge (0, 2.5, 5, 10, 15 and 20 Mg ha-1, with supplementation of potassium due to low concentration in the residue), besides the control treatment, mineral fertilization and only potassium supplementation. After nine years, the contents of all micronutrients evaluated presented a significant response to the application of the treatments, and the application of sewage sludge provided an increase in their contents. Soil pH remained stable at sites receiving mineral fertilization and potassium supplementation. Only manganese and zinc showed mobility in the soil profile. The application of sewage sludge in degraded soil increases the micronutrient content and decreases its movement in the soil profile, and the application of the maximum dose of the residue does not provide toxic levels of these elements in the soil in the long term.


2019 ◽  
Vol 48 (2) ◽  
pp. 126-135 ◽  
Author(s):  
Željka Rudić ◽  
Goran Nikolić ◽  
Dragiša Stević ◽  
Mile Božić ◽  
Ksenija Mačkić ◽  
...  

Irrigation has contributed significantly to poverty alleviation and food security; however, the sustainability of irrigated agriculture is being questioned both economically and environmentally. Agriculture is the economic sector where most water is consumed, but the lowest price is practised. This article presents an interdisciplinary approach to selecting and prioritizing infrastructure, by differentiating water sources for irrigation, in the case of two complex irrigation systems. Comparative analysis was undertaken for major hydrological, hydraulic, hydrotechnical and economic parameters in order to estimate a long-term water supply for irrigation. In the case of complex irrigation water supply systems, differentiating the ‘subsystems’ per water source and allowing their separate development require less investment and give a better chance for the project implementation. The average calculated investments in basic irrigation infrastructure were in a wide range, from EUR3327 to 10,103 ha−1, depending on anticipated water source (impoundments, groundwater and rivers). Economic water price also varied widely, EUR0.09–0.30 m−3, depending on the water source for irrigation.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 465-471 ◽  
Author(s):  
D. Geenens ◽  
C. Jonkers ◽  
C. Thoeye

In the coming years, as stricter environmental requirements are imposed, many European Union wastewater treatment plants (WWTP) need to be expanded and/or upgraded. This requires considerable investments. Optimising the renovation recourses can lead to significant savings. The use of entrapped nitrifying bacteria for upgrading of WWTP towards nutrient removal may be benificial. Long term pilot tests were performed to evaluate a so-called pellet reactor. Differences in performance and microbiological composition of classical activated sludge and the pellet reactor were investigated. FISH analyses showed (i) absence of Nitrobacter cells and (ii) high abundance of Nitrospira in the pilot reactors. Two Belgian WWTP make use of fine bubble aeration and could – theoretically – easily be renovated towards nitrogen removal using encapsulated nitrifiers. Financial aspects are commented on.


Author(s):  
Gintaras ŠIAUDINIS ◽  
Danutė KARČAUSKIENĖ

The long-term field experiment with new high yielding perennial energy crop - cup plant (Silphium perfoliatum L.) was conducted in order to evaluate its biomass productivity in Vėžaičiai branch of the Lithuanian Research Centre for Agricultural and Forestry. Experimental site – naturally acid Bathygleic Dystric Glossic Retisol, pH 4.2-4.4. Granulated sewage sludge was applied (at 45 and 90 t ha-1 rates) as an alternative organic fertilizer. The fertilization was done at the beginning of the experiment, prior to cup plant’s sprouts planting in 2013. Each experimental year, traditional N60P60K60 fertilization was performed in a separate treatment. Cup plant’s biomass was harvesting once per season at the end of vegetation. Cup plant’s dry mass (DM) yield substantially increased from 2.80 t ha-1 (in 2014) to 13.41 t ha-1 (in 2016). The use of sewage sludge fertilization was notably superior to that of mineral fertilization for cup plant’s biomass productivity. In all experimental years, the optimal was the application of 45 t ha-1 rate of sewage sludge - in compare with unfertilized treatment (control), DM yield increased by 66 %, on average. Increasing of sewage sludge rate up to 90 kg ha-1 did not give any DM yield supplement. Energy evaluation of growing technology revealed that the application of 45 t ha-1 sewage sludge rate caused the substantial increase of energy output from 1 ha; and on the contrarily, sharply decreased net energy ratio. In order to determine the long-term effects of fertilization on biomass yield, these studies will continue a few more years.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Fábio Camilotti ◽  
Alysson Roberto Baizi e Silva ◽  
Marcos Omir Marques

Application of sewage sludge with high lead (Pb) contents may pollute soils and contaminate crops. The objective of this work was to evaluate peanut responses to application of sewage sludge with varying Pb contents in order to supply phosphorus (P) to the plant. A greenhouse experiment was carried out with peanut grown on soil sample from a medium-textured Haplustox. Treatments were arranged in 3 × 2 + 2 factorial scheme, replicated three times, distributed in randomized block design, and consisted of: three Pb rates applied to soil with sewage sludge (3, 21, and 42 mg kg−1) × two times of sewage sludge application (30 days before peanut sowing and at the day of the sowing) + mineral fertilization + control (without sewage sludge and mineral fertilization). Sewage sludge was efficient to supply P to peanut. Sewage sludge containing high rates of Pb, when applied, did not harm biomass and yield of the plant, but increased HCl-extractable Pb in soil and Pb content in shoot, roots, and pod husks. Increase of Pb content in pod husks may represent contamination risk of kernels and their products with fragments from husks detached during manipulation or industrial processing of peanuts.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 727
Author(s):  
Ana Simoes-Mota ◽  
Rosa Maria Poch ◽  
Alberto Enrique ◽  
Luis Orcaray ◽  
Iñigo Virto

The aim of this work was to identify the most sensitive soil quality indicators and assess soil quality after long-term application of sewage sludge (SS) and conventional mineral fertilization for rainfed cereal production in a sub-humid Mediterranean calcareous soil. The treatments included six combinations of SS at different doses (40 t ha−1 and 80 ha−1) and frequencies (every 1, 2 and 4 years), plus a control with mineral fertilization, and a baseline control without fertilization. Twenty-five years after the onset of the experiment, 37 pre-selected physical, chemical and biological soil parameters were measured, and a minimum data set was determined. Among these indicators, those significantly affected by treatment and depth were selected as sensitive. A principal component analysis (PCA) was then performed for each studied depth. At 0–15 cm, PCA identified three factors (F1, F2 and F3), and at 15–30 cm, two factors (F4 and F5) that explained 71.5% and 67.4% of the variation, respectively, in the soil parameters. The most sensitive indicators (those with the highest correlation within each factor) were related to nutrients (P and N), organic matter, and trace metals (F1 and F4), microporosity (F2), earthworm activity (F3), and exchangeable cations (F5). Only F3 correlated significantly (and negatively) with yield. From these results, we concluded that soil quality can be affected in opposite directions by SS application, and that a holistic approach is needed to better assess soil functioning under SS fertilization in this type of agrosystem.


Author(s):  
Claudia Maria Gomes de Quevedo ◽  
Wanderley Da Silva Paganini

Strategies for managing phosphorus in the environment have been considered to be of great significance. In light of debates about protecting water resources, tools for recovering and recycling phosphorus are being assessed, with the aim of guaranteeing the sustainability of natural reserves. This study discusses phosphorus dynamics in the environment and measures geared towards the management of its presence in water. In order to illustrate the situation in Brazil, we present an assessment of the size of the potential phosphorus load that is discharged daily into the Tietê River, State of São Paulo, by the urban population living in its basin. Due to its replacement in powdered detergents, the results showed a potential reduction in the amount of phosphorus discharged into the Tietê of about 11.7 t day-1. The size of the potential phosphorus load that might be recovered from sewage sludge shows a scenario of great potential for re-using and recycling in agricultural areas, as long as the necessary care is taken regarding safety and environmental protection. Management methodologies, such as Cleaner Production (CP) techniques, are important tools for controlling water pollution, as they contribute to the reduction of phosphorus emissions. They can therefore improve the perception producers and consumers have of this issue, introducing reducing, recycling and recovering concepts, and assisting in compliance with public policies geared towards preserving the environment. 


Sign in / Sign up

Export Citation Format

Share Document