scholarly journals New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Yang ◽  
Jie Tao ◽  
Xin Jin ◽  
Qi Qin

Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-) have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by , FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA , and the conversion efficiency of 3.61% at 1 sun illumination.

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
M. M. Noor ◽  
M. H. Buraidah ◽  
S. N. F. Yusuf ◽  
M. A. Careem ◽  
S. R. Majid ◽  
...  

A plasticized polymer electrolyte system composed of PVDF-HFP, potassium iodide (KI), and equal weight of ethylene carbonate (EC) and propylene carbonate (PC) has been used in a dye-sensitized solar cell (DSSC). The electrolyte with the composition 40 wt. % PVDF-HFP-10 wt. % KI-50 wt. % (EC + PC) exhibits the highest room temperature ionic conductivity of 1.10 × 10−3 S cm−1. A small amount of iodine crystal of about 10 wt. % of KI was added to the electrolyte in the liquid state to provide the redox couple for DSSC operation. The polymer electrolyte films were prepared by the solvent casting method. The DSSCs were fabricated with the electrolyte film sandwiched between a TiO2/dye photoelectrode and a Pt-counter electrode and characterized under 100 mW cm−2white light. The DSSC performance with different dyes such as Ruthenizer 535 (N3), anthocyanin, chlorophyll, and a mixture of anthocyanin and chlorophyll (v/v=1) has been compared. The DSSC with Ruthenizer 535 (N3) dye exhibits the best performance with a short-circuit current density of 8.16 mA cm−2, open-circuit voltage of 0.76 V, fill factor of 0.35, and photoconversion efficiency of 2.2%.


2009 ◽  
Vol 610-613 ◽  
pp. 347-352 ◽  
Author(s):  
Yan Yang ◽  
Jie Tao ◽  
Li Ma

Poly(vinylidene fluoride)(PVDF) is photochemically stable even in the presence of TiO2 and Pt nanoparticles, and poly(methacrylate)(PMMA) has good solvent retention. The quasi-solid electrolytes based on PVDF-PMMA blend polymer were prepared in this work by soaking a porous membrane in an organic electrolyte solution containing the I−/I3− redox couple. The as-prepared electrolytes were characterized by means of Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope respectively. Moreover, the conductivity and the voltage-current curves of the electrolytes were measured by electrochemical workstation. The results indicated that the optimum blend proportion of PVDF and PMMA was 6:4. The porous structure prepared with the addition of propanetriol was beneficial to ion diffusion and thus enhanced the conductivity of the electrolytes. The gel polymer electrolyte had a conductivity of 0.14 mS•cm-1 under the ambient atmosphere. Furthermore, electrolytes were assembled to fabricate DSSCs and the performance of the cells was tested. The good properties with the open-circuit voltage of 0.60V and the short-circuit current of 1.1mAcm-2 were achieved upon illumination with visible light.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


2012 ◽  
Vol 476-478 ◽  
pp. 1767-1770
Author(s):  
Yu Li Lin ◽  
Cheng Yi Hsu ◽  
Chang Lun Tai

The task of this study is to prepare the TiO2 film electrode for dye-sensitized solar cells (DSSC) on ITO PET substrate using a general jet-printer. The results were compared with that obtained using ITO glass substrate. In this study, the dispersion of TiO2 slurry was manipulated by changing the pH value of the solution to avoid agglomeration of TiO2 particles. The average TiO2 particles used in this study were measured about 130nm. The experimental results show that it has the best performance when the thickness of the TiO2 film was about 10μm. In ITO glass substrate, the measured short circuit current was about 5.03mA, the open circuit voltage was measured to be 0.65V. In ITO-PET substrate, the measured short circuit current was about 2.73mA, the open circuit voltage was measured to be 0.68V.


BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 23-28
Author(s):  
Leela Pradhan Joshi

Aluminium doped Zinc Oxide (AZO) seed layers were deposited on Fluorine doped Tin Oxide (FTO) substrates using a spin coating technique. These were then immersed in growth solutions of zinc nitrate, hexamethylenetetramine and distilled water to develop nanoplates of Zinc Oxide (ZnO). The nanostructures of ZnO grown on FTO were studied using x-ray diffraction techniques. Dye-sensitized solar cells (DSSC) were fabricated using two prepared electrodes, one of dye-loaded zinc oxide and another that was platinum coated. The electrolyte used was potassium iodide iodine solution. The performance of the assembled DSCCs was tested by drawing an IV curve. The results showed that the short circuit current and open circuit voltages were about 10 microamperes and 270 millivolts respectively.BIBECHANA 13 (2016) 23-28


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4181 ◽  
Author(s):  
Mariia Karpacheva ◽  
Vanessa Wyss ◽  
Catherine E. Housecroft ◽  
Edwin C. Constable

By systematic tuning of the components of the electrolyte, the performances of dye-sensitized solar cells (DSCs) with an N-heterocyclic carbene iron(II) dye have been significantly improved. The beneficial effects of an increased Li+ ion concentration in the electrolyte lead to photoconversion efficiencies (PCEs) up to 0.66% for fully masked cells (representing 11.8% relative to 100% set for N719) and an external quantum efficiency maximum (EQEmax) up to approximately 25% due to an increased short-circuit current density (JSC). A study of the effects of varying the length of the alkyl chain in 1-alkyl-3-methylimidazolium iodide ionic liquids (ILs) shows that a longer chain results in an increase in JSC with an overall efficiency up to 0.61% (10.9% relative to N719 set at 100%) on going from n-methyl to n-butyl chain, although an n-hexyl chain leads to no further gain in PCE. The results of electrochemical impedance spectroscopy (EIS) support the trends in JSC and open-circuit voltage (VOC) parameters. A change in the counterion from I− to [BF4]− for 1-propyl-3-methylimidazolium iodide ionic liquid leads to DSCs with a remarkably high JSC value for an N-heterocyclic carbene iron(II) dye of 4.90 mA cm−2, but a low VOC of 244 mV. Our investigations have shown that an increased concentration of Li+ in combination with an optimized alkyl chain length in the 1-alkyl-3-methylimidazolium iodide IL in the electrolyte leads to iron(II)-sensitized DSC performances comparable with those of containing some copper(I)-based dyes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Parth Bhatt ◽  
Kavita Pandey ◽  
Pankaj Yadav ◽  
Brijesh Tripathi ◽  
Manoj Kumar

This paper investigates the effect of ageing on the performance of dye-sensitized solar cells (DSCs). The electrical characterization of fresh and degraded DSCs is done under AM1.5G spectrum and the current density-voltage (J-V) characteristics are analyzed. Short circuit current density (JSC) decreases significantly whereas a noticeable increase in open circuit voltage is observed. These results have been further investigated electroanalytically using electrochemical impedance spectroscopy (EIS). An increase in net resistance results in a lower JSC for the degraded DSC. This decrease in current is mainly due to degradation of TiO2-dye interface, which is observed from light and dark J-V characteristics and is further confirmed by EIS measurements. A reduction in the chemical capacitance of the degraded DSC is observed, which is responsible for the shifting of Fermi level with respect to conduction band edge that further results in an increase of open circuit voltage for the degraded DSC. It is also confirmed from EIS that the degradation leads to a better contact formation between the electrolyte and Pt electrode, which improves the fill factor of the DSC. But the recombination throughout the DSC is found to increase along with degradation. This study suggests that the DSC should be used under low illumination conditions and around room temperature for a longer life.


2011 ◽  
Vol 64 (7) ◽  
pp. 951 ◽  
Author(s):  
Perumal Rajakumar ◽  
Kathiresan Visalakshi ◽  
Shanmugam Ganesan ◽  
Pichai Maruthamuthu ◽  
Samuel Austin Suthanthiraraj

Synthesis of polyolefinic aromatic molecules with pyrene as the surface group, and their role as an additive in the redox couple of dye-sensitized solar cells, is described. The studies yield a promising power conversion efficiency of 5.27% with a short circuit current density of 6.50 mA cm–2, an open circuit voltage of 0.60 V, and a fill factor of 0.54 under 40 mW cm–2 simulated air mass (A.M.) 1.5 illumination. Most importantly, the photocurrent responsivity increases with an increase in the number of pyrene units on the surface.


2013 ◽  
Vol 658 ◽  
pp. 25-29
Author(s):  
Rathanawan Magaraphan ◽  
Jaruwan Joothamongkhon

Four natural dyes from sappan wood, noni leaves, safflower and black rice show 4 different colors, red, green, yellow and dark purple. They were extracted by water/ethanol and used as a sensitizer for the ZnO based dye-sensitized solar cell (DSSC). UV-Visible absorption revealed high extinction coefficients of the safflower, noni leaves and sappan wood while the black rice was opposite. And they were adsorbed on ZnO nanoparticles as suggested by the change in absorption spectrum of ZnO. SEM results showed the ZnO nanoparticle-porous film of 9 micron thick. I-V measurement showed both low short circuit current and open circuit voltage leading to poor fill factor. As a result, the efficiencies of the fabricated solar cells were 0.00165, 0.05865, 0.00007 and 0.00015% for sappan wood, noni leaves, safflower and black rice DSSCs, respectively.


2011 ◽  
Vol 1303 ◽  
Author(s):  
Miho Kitamura ◽  
Yuya Shimada ◽  
Ryoto Kawabata ◽  
Toshimichi Kasamatsu ◽  
Yoshiaki Tokunaga ◽  
...  

ABSTRACTPerformance on dye-sensitized solar cells (DSCs) using a titanium dioxide nanoparticle layer treated by tetrafluoromethane gas plasma was investigated through electrical properties under illumination. A 50%-increase of maximum power density was observed in the plasmatreated DSCs when RF power and processing time are 1W and 100s, respectively. We also obtain diode factor between 1 and 2 in the fabricated DSCs from a plot of short-circuit current versus open-circuit voltage and then the calculated current density-voltage curve was good agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document