scholarly journals Bayesian Inference on the Shape Parameter and Future Observation of Exponentiated Family of Distributions

2011 ◽  
Vol 2011 ◽  
pp. 1-17
Author(s):  
Sanku Dey ◽  
Sudhansu S. Maiti

The Bayes estimators of the shape parameter of exponentiated family of distributions have been derived by considering extension of Jeffreys' noninformative as well as conjugate priors under different scale-invariant loss functions, namely, weighted quadratic loss function, squared-log error loss function and general entropy loss function. The risk functions of these estimators have been studied. We have also considered the highest posterior density (HPD) intervals for the parameter and the equal-tail and HPD prediction intervals for future observation. Finally, we analyze one data set for illustration.

2002 ◽  
Vol 21 (3) ◽  
pp. 78-82
Author(s):  
V. S.S. Yadavalli ◽  
P. J. Mostert ◽  
A. Bekker ◽  
M. Botha

Bayesian estimation is presented for the stationary rate of disappointments, D∞, for two models (with different specifications) of intermittently used systems. The random variables in the system are considered to be independently exponentially distributed. Jeffreys’ prior is assumed for the unknown parameters in the system. Inference about D∞ is being restrained in both models by the complex and non-linear definition of D∞. Monte Carlo simulation is used to derive the posterior distribution of D∞ and subsequently the highest posterior density (HPD) intervals. A numerical example where Bayes estimates and the HPD intervals are determined illustrates these results. This illustration is extended to determine the frequentistical properties of this Bayes procedure, by calculating covering proportions for each of these HPD intervals, assuming fixed values for the parameters.


Author(s):  
Hiba Zeyada Muhammed ◽  
Essam Abd Elsalam Muhammed

In this paper, Bayesian and non-Bayesian estimation of the inverted Topp-Leone distribution shape parameter are studied when the sample is complete and random censored. The maximum likelihood estimator (MLE) and Bayes estimator of the unknown parameter are proposed. The Bayes estimates (BEs) have been computed based on the squared error loss (SEL) function and using Markov Chain Monte Carlo (MCMC) techniques. The asymptotic, bootstrap (p,t), and highest posterior density intervals are computed. The Metropolis Hasting algorithm is proposed for Bayes estimates. Monte Carlo simulation is performed to compare the performances of the proposed methods and one real data set has been analyzed for illustrative purposes.


2019 ◽  
Vol 97 (4) ◽  
pp. 352-361 ◽  
Author(s):  
Haley A. Ohms ◽  
Alix I. Gitelman ◽  
Chris E. Jordan ◽  
Dave A. Lytle

Partial migration, the phenomenon in which animal populations are composed of both migratory and nonmigratory individuals, is widespread among migrating animals. The proportion of migrants in these populations has direct influences on population genetics and dynamics, ecosystem dynamics, mating systems, evolution, and responses to environmental change, yet there are very few studies that measure the proportion of migrants. This is because existing methods to estimate the proportion of migrants are time-consuming and expensive. In this paper, we demonstrate a new method for estimating the proportion of migrants in a population based on sex ratio measurements. Many partially migratory taxa exhibit sex-biased migration or residency, and in these cases, the sex ratios of migrants and nonmigrants are fundamentally related to the proportion of migrants in the population. We define this relationship quantitatively and show how it can be used to infer the proportion of migrants in a population through a process we term “sex-ratio balancing”. We obtain Bayesian estimates of proportion of migrants and quantify the uncertainty in these estimates with highest posterior density intervals. Lastly, we validate the sex-ratio balancing approach with a Chinook salmon (Oncorhynchus tshawytscha Walbaum in Artedi, 1792) data set. Sex-ratio balancing holds promise as a tool for quantifying partial migration and filling a key data gap about partially migratory taxa.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 898 ◽  
Author(s):  
Hongyi Liao ◽  
Wenhao Gui

A competing risks model under progressively type II censored data following the Rayleigh distribution is considered. We establish the maximum likelihood estimation for unknown parameters and compute the observed information matrix and the expected Fisher information matrix to construct the asymptotic confidence intervals. Moreover, we obtain the Bayes estimation based on symmetric and non-symmetric loss functions, that is, the squared error loss function and the general entropy loss function, and the highest posterior density intervals are also derived. In addition, a simulation study is presented to assess the performances of different methods discussed in this paper. A real-life data set analysis is provided for illustration purposes.


Author(s):  
Terna Godfrey Ieren ◽  
Angela Unna Chukwu

In this paper, we estimate a shape parameter of the Weibull-Frechet distribution by considering the Bayesian approach under two non-informative priors using three different loss functions. We derive the corresponding posterior distributions for the shape parameter of the Weibull-Frechet distribution assuming that the other three parameters are known. The Bayes estimators and associated posterior               risks have also been derived using the three different loss functions. The performance of the Bayes estimators are evaluated and compared using a comprehensive simulation study and a real life application to find out the combination of a loss function and a prior having the minimum Bayes risk and hence producing the best results. In conclusion, this study reveals that in order to estimate the parameter in question, we should use quadratic loss function under either of the two non-informative priors used in this study.  


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1558
Author(s):  
Ziyu Xiong ◽  
Wenhao Gui

The point and interval estimations for the unknown parameters of an exponentiated half-logistic distribution based on adaptive type II progressive censoring are obtained in this article. At the beginning, the maximum likelihood estimators are derived. Afterward, the observed and expected Fisher’s information matrix are obtained to construct the asymptotic confidence intervals. Meanwhile, the percentile bootstrap method and the bootstrap-t method are put forward for the establishment of confidence intervals. With respect to Bayesian estimation, the Lindley method is used under three different loss functions. The importance sampling method is also applied to calculate Bayesian estimates and construct corresponding highest posterior density (HPD) credible intervals. Finally, numerous simulation studies are conducted on the basis of Markov Chain Monte Carlo (MCMC) samples to contrast the performance of the estimations, and an authentic data set is analyzed for exemplifying intention.


2018 ◽  
Vol 47 (3) ◽  
pp. 40-62 ◽  
Author(s):  
Ankita Chaturvedi ◽  
Sanjay Kumar Singh ◽  
Umesh Singh

This article presents the procedures for the estimation of the parameter of Rayleighdistribution based on Type-II progressive hybrid censored fuzzy lifetime data. Classicalas well as the Bayesian procedures for the estimation of unknown model parameters has been developed. The estimators obtained here are Maximum likelihood (ML) estimator, Method of moments (MM) estimator, Computational approach (CA) estimator and Bayes estimator. Highest posterior density (HPD) credible intervals of the unknown parameter are obtained by using Markov Chain Monte Carlo (MCMC) technique. For numerical illustration, a real data set has been considered.


Author(s):  
Innocent Boyle Eraikhuemen ◽  
Olateju Alao Bamigbala ◽  
Umar Alhaji Magaji ◽  
Bassa Shiwaye Yakura ◽  
Kabiru Ahmed Manju

In the present paper, a three-parameter Weibull-Lindley distribution is considered for Bayesian analysis. The estimation of a shape parameter of Weibull-Lindley distribution is obtained with the help of both the classical and Bayesian methods. Bayesian estimators are obtained by using Jeffrey’s prior, uniform prior and Gamma prior under square error loss function, quadratic loss function and Precautionary loss function. Estimation by the method of Maximum likelihood is also discussed. These methods are compared by using mean square error through simulation study with varying parameter values and sample sizes.


2015 ◽  
Vol 3 (2) ◽  
pp. 108 ◽  
Author(s):  
Hesham Reyad ◽  
Soha Othman Ahmed

<p>This paper seeks to focus on Bayesian and E-Bayesian estimation for the unknown shape parameter of the Gumbel type-II distribution based on type-II censored samples. These estimators are obtained under symmetric loss function [squared error loss (SELF))] and various asymmetric loss functions [LINEX loss function (LLF), Degroot loss function (DLF), Quadratic loss function (QLF) and minimum expected loss function (MELF)]. Comparisons between the E-Bayesian estimators with the associated Bayesian estimators are investigated through a simulation study.</p>


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 937 ◽  
Author(s):  
Ying Xie ◽  
Wenhao Gui

Estimating the accurate evaluation of product lifetime performance has always been a hot topic in manufacturing industry. This paper, based on the lifetime performance index, focuses on its evaluation when a lower specification limit is given. The progressive first-failure-censored data we discuss have a common log-logistic distribution. Both Bayesian and non-Bayesian method are studied. Bayes estimator of the parameters of the log-logistic distribution and the lifetime performance index are obtained using both the Lindley approximation and Monte Carlo Markov Chain methods under symmetric and asymmetric loss functions. As for interval estimation, we apply the maximum likelihood estimator to construct the asymptotic confidence intervals and the Metropolis–Hastings algorithm to establish the highest posterior density credible intervals. Moreover, we analyze a real data set for demonstrative purposes. In addition, different criteria for deciding the optimal censoring scheme have been studied.


Sign in / Sign up

Export Citation Format

Share Document