scholarly journals Practical Stability in terms of Two Measures for Impulsive Differential Equations with “Supremum”

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
S. G. Hristova ◽  
A. Georgieva

The object of investigations is a system of impulsive differential equations with “supremum.” These equations are not widely studied yet, and at the same time they are adequate mathematical model of many real world processes in which the present state depends significantly on its maximal value on a past time interval. Practical stability for a nonlinear system of impulsive differential equations with “supremum” is defined and studied. It is applied Razumikhin method with piecewise continuous scalar Lyapunov functions and comparison results for scalar impulsive differential equations. To unify a variety of stability concepts and to offer a general framework for the investigation of the stability theory, the notion of stability in terms of two measures has been applied to both the given system and the comparison scalar equation. An example illustrates the usefulness of the obtained sufficient conditions.






2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Wu ◽  
Jing Han ◽  
Xiushan Cai

We consider the practical stability of impulsive differential equations with infinite delay in terms of two measures. New stability criteria are established by employing Lyapunov functions and Razumikhin technique. Moreover, an example is given to illustrate the advantage of the obtained result.



2022 ◽  
Vol 7 (2) ◽  
pp. 1758-1774
Author(s):  
Kui Liu ◽  

<abstract><p>In this paper, the stability of $ (\omega, c) $-periodic solutions of non-instantaneous impulses differential equations is studied. The exponential stability of homogeneous linear non-instantaneous impulsive problems is studied by using Cauchy matrix, and some sufficient conditions for exponential stability are obtained. Further, by using Gronwall inequality, sufficient conditions for exponential stability of $ (\omega, c) $-periodic solutions of nonlinear noninstantaneous impulsive problems are established. Finally, some examples are given to illustrate the correctness of the conclusion.</p></abstract>



2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
JinRong Wang ◽  
Xuezhu Li

We introduce two Ulam's type stability concepts for nonautonomous linear impulsive ordinary differential equations. Ulam-Hyers and Ulam-Hyers-Rassias stability results on compact and unbounded intervals are presented, respectively.



2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Palwinder Singh ◽  
Sanjay K. Srivastava ◽  
Kanwalpreet Kaur

AbstractIn this paper, some sufficient conditions for uniform practical stability of impulsive functional differential equations in terms of two measures with effect of delay at the time of impulses are obtained by using piecewise continuous Lyapunov functions and Razumikhin techniques. The application of obtained result is illustrated with an example.



Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5217-5239 ◽  
Author(s):  
Ravi Agarwal ◽  
Snehana Hristova ◽  
Donal O’Regan

In this paper the statement of initial value problems for fractional differential equations with noninstantaneous impulses is given. These equations are adequate models for phenomena that are characterized by impulsive actions starting at arbitrary fixed points and remaining active on finite time intervals. Strict stability properties of fractional differential equations with non-instantaneous impulses by the Lyapunov approach is studied. An appropriate definition (based on the Caputo fractional Dini derivative of a function) for the derivative of Lyapunov functions among the Caputo fractional differential equations with non-instantaneous impulses is presented. Comparison results using this definition and scalar fractional differential equations with non-instantaneous impulses are presented and sufficient conditions for strict stability and uniform strict stability are given. Examples are given to illustrate the theory.



Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 501
Author(s):  
Ahmed Boudaoui ◽  
Khadidja Mebarki ◽  
Wasfi Shatanawi ◽  
Kamaleldin Abodayeh

In this article, we employ the notion of coupled fixed points on a complete b-metric space endowed with a graph to give sufficient conditions to guarantee a solution of system of differential equations with impulse effects. We derive recisely some new coupled fixed point theorems under some conditions and then apply our results to achieve our goal.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shyam Sundar Santra ◽  
Apurba Ghosh ◽  
Omar Bazighifan ◽  
Khaled Mohamed Khedher ◽  
Taher A. Nofal

AbstractIn this work, we present new necessary and sufficient conditions for the oscillation of a class of second-order neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.



Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 730
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

In this paper a system of nonlinear Riemann–Liouville fractional differential equations with non-instantaneous impulses is studied. We consider a Riemann–Liouville fractional derivative with a changeable lower limit at each stop point of the action of the impulses. In this case the solution has a singularity at the initial time and any stop time point of the impulses. This leads to an appropriate definition of both the initial condition and the non-instantaneous impulsive conditions. A generalization of the classical Lipschitz stability is defined and studied for the given system. Two types of derivatives of the applied Lyapunov functions among the Riemann–Liouville fractional differential equations with non-instantaneous impulses are applied. Several sufficient conditions for the defined stability are obtained. Some comparison results are obtained. Several examples illustrate the theoretical results.



Sign in / Sign up

Export Citation Format

Share Document