scholarly journals The Reliability of a Three-Dimensional Photo System- (3dMDface-) Based Evaluation of the Face in Cleft Lip Infants

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rebecca Ort ◽  
Philipp Metzler ◽  
Astrid L. Kruse ◽  
Felix Matthews ◽  
Wolfgang Zemann ◽  
...  

Ample data exists about the high precision of three-dimensional (3D) scanning devices and their data acquisition of the facial surface. However, a question remains regarding which facial landmarks are reliable if identified in 3D images taken under clinical circumstances. Sources of error to be addressed could be technical, user dependent, or patient respectively anatomy related. Based on clinical 3D photos taken with the 3dMDface system, the intra observer repeatability of 27 facial landmarks in six cleft lip (CL) infants and one non-CL infant was evaluated based on a total of over 1,100 measurements. Data acquisition was sometimes challenging but successful in all patients. The mean error was 0.86 mm, with a range of 0.39 mm (Exocanthion) to 2.21 mm (soft gonion). Typically, landmarks provided a small mean error but still showed quite a high variance in measurements, for example, exocanthion from 0.04 mm to 0.93 mm. Vice versa, relatively imprecise landmarks still provide accurate data regarding specific spatial planes. One must be aware of the fact that the degree of precision is dependent on landmarks and spatial planes in question. In clinical investigations, the degree of reliability for landmarks evaluated should be taken into account. Additional reliability can be achieved via multiple measuring.

Author(s):  
Virgilio F. Ferrario ◽  
Chiarella Sforza ◽  
Carlo E. Poggio ◽  
Massimiliano Cova ◽  
Gianluca Tartaglia

Objective In this investigation, the precision of a commercial three-dimensional digitizer in the detection of facial landmarks in human adults was assessed. Methods Fifty landmarks were identified and marked on the faces of five men, on five women, and on a stone cast of the face of one man. For each subject, the three-dimensional coordinates of the landmarks were obtained twice using an electromagnetic three-dimensional digitizer, and the duplicate digitizations were superimposed using common orientations and centers of gravity. Metric differences between homologous landmarks were assessed, and Dahlberg's error was computed. Results For both men and women, the error was 1.05% of the nasion-mid-tragion distance, while for the cast, it was 0.9%. When the duplicate digitizations were used to mathematically reconstruct the faces, and several distances, angles, volumes, and surfaces were computed, more than 80% of the measurements had coefficients of variation lower than 1%. Conclusions The digitizer can assess the coordinates of facial landmarks with sufficient precision, and reliable measurements can be obtained.


2003 ◽  
Vol 40 (5) ◽  
pp. 544-549 ◽  
Author(s):  
Virgilio F. Ferrario ◽  
Chiarella Sforza ◽  
Claudia Dellavia ◽  
Gianluca M. Tartaglia ◽  
Davide Sozzi ◽  
...  

Objective To supply quantitative information about the facial soft tissues of adult operated patients with cleft lip and palate (CLP). Design, Setting, and Patients The three-dimensional coordinates of soft tissue facial landmarks were obtained using an electromagnetic digitizer in 18 Caucasian patients with CLP (11 males and 7 females aged 19 to 27 years) and 162 healthy controls (73 females and 89 males aged 18 to 30 years). From the landmarks, 15 facial dimensions and two angles were calculated. Data were compared with those collected in healthy individuals by computing z-scores. Two summary anthropometric measurements for quantifying craniofacial variations were assessed in both the patients and reference subjects: the mean z-score (an index of overall facial size), and its SD, called the craniofacial variability index (an index of facial harmony). Results In treated patients with CLP, facial size was somewhat smaller than in normal individuals, but in all occasions the mean z-score fell inside the normal interval (mean ± 2 SD). Almost all patients had a craniofacial variability index larger than the normal interval, indicating a global disharmonious appearance. Overall, in patients pronasale, subnasale, and pogonion were more posterior, the nose was shorter and larger, the face was narrower, and the soft tissue profile and upper lip were flatter than in the reference population. Conclusions The facial soft tissue structures of adult operated patients with CLP differed from those of normal controls of the same age, sex, and ethnic group. In this patient group, surgical corrections of CLP failed to provide a completely harmonious appearance, even if the deviations from the reference were limited. Further analyses of larger groups of patients are needed.


Author(s):  
Michael Alfertshofer ◽  
Konstantin Frank ◽  
Dmitry V. Melnikov ◽  
Nicholas Möllhoff ◽  
Robert H. Gotkin ◽  
...  

AbstractFacial flap surgery depends strongly on thorough preoperative planning and precise surgical performance. To increase the dimensional accuracy of transferred facial flaps, the methods of ultrasound and three-dimensional (3D) surface scanning offer great possibilities. This study aimed to compare different methods of measuring distances in the facial region and where they can be used reliably. The study population consisted of 20 volunteers (10 males and 10 females) with a mean age of 26.7 ± 7.2 years and a mean body mass index of 22.6 ± 2.2 kg/m2. Adhesives with a standardized length of 20 mm were measured in various facial regions through ultrasound and 3D surface scans, and the results were compared. Regardless of the facial region, the mean length measured through ultrasound was 18.83 mm, whereas it was 19.89 mm for 3D surface scans, with both p < 0.0001. Thus, the mean difference was 1.17 mm for ultrasound measurements and 0.11 mm for 3D surface scans. Curved facial regions show a great complexity when it comes to measuring distances due to the concavity and convexity of the face. Distance measurements through 3D surface scanning showed more accurate distances than the ultrasound measurement. Especially in “complex” facial regions (e.g., glabella region and labiomental sulcus), the 3D surface scanning showed clear advantages.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Stefano Mummolo ◽  
Alessandro Nota ◽  
Enrico Marchetti ◽  
Giuseppe Padricelli ◽  
Giuseppe Marzo

Aim. This study aimed to evaluate the reliability of 3D-TMT, previously used only for dynamic testing, in a static cephalometric evaluation. Material and Method. A group of 40 patients (20 males and 20 females; mean age 14.2±1.2 years; 12–18 years old) was included in the study. The measurements obtained by the 3D-TMT cephalometric analysis with a conventional frontal cephalometric analysis were compared for each subject. Nine passive markers reflectors were positioned on the face skin for the detection of the profile of the patient. Through the acquisition of these points, corresponding plans for three-dimensional posterior-anterior cephalometric analysis were found. Results. The cephalometric results carried out with 3D-TMT and with traditional posterior-anterior cephalometric analysis showed the 3D-TMT system values are slightly higher than the values measured on radiographs but statistically significant; nevertheless their correlation is very high. Conclusion. The recorded values obtained using the 3D-TMT analysis were correlated to cephalometric analysis, with small but statistically significant differences. The Dahlberg errors resulted to be always lower than the mean difference between the 2D and 3D measurements. A clinician should use, during the clinical monitoring of a patient, always the same method, to avoid comparing different millimeter magnitudes.


2021 ◽  
Vol 10 (2) ◽  
pp. 707-715
Author(s):  
Mohammed Ed-dhahraouy ◽  
Hicham Riri ◽  
Manal Ezzahmouly ◽  
Abdelmajid El Moutaouakkil ◽  
Hakima Aghoutan ◽  
...  

This study proposes a new contribution to solve the problem of automatic landmarks detection in three-dimensional cephalometry. 3D images obtained from CBCT (cone beam computed tomography) equipment were used for automatic identification of twelve landmarks. The proposed method is based on a local geometry and intensity criteria of skull structures. After the step of preprocessing and binarization, the algorithm segments the skull into three structures using the geometry information of nasal cavity and intensity information of the teeth. Each targeted landmark was detected using local geometrical information of the volume of interest containing this landmark. The ICC and confidence interval (95% CI) for each direction were 0, 91 (0.75 to 0.96) for x- direction; 0.92 (0.83 to 0.97) for y-direction; 0.92 (0.79 to 0.97) for z-direction. The mean error of detection was calculated using the Euclidian distance between the 3D coordinates of manually and automatically detected landmarks. The overall mean error of the algorithm was 2.76 mm with a standard deviation of 1.43 mm. Our proposed approach for automatic landmark identification in 3D cephalometric was capable of detecting 12 landmarks on 3D CBCT images which can be facilitate the use of 3D cephalometry to orthodontists.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1199
Author(s):  
Seho Park ◽  
Kunyoung Lee ◽  
Jae-A Lim ◽  
Hyunwoong Ko ◽  
Taehoon Kim ◽  
...  

Research on emotion recognition from facial expressions has found evidence of different muscle movements between genuine and posed smiles. To further confirm discrete movement intensities of each facial segment, we explored differences in facial expressions between spontaneous and posed smiles with three-dimensional facial landmarks. Advanced machine analysis was adopted to measure changes in the dynamics of 68 segmented facial regions. A total of 57 normal adults (19 men, 38 women) who displayed adequate posed and spontaneous facial expressions for happiness were included in the analyses. The results indicate that spontaneous smiles have higher intensities for upper face than lower face. On the other hand, posed smiles showed higher intensities in the lower part of the face. Furthermore, the 3D facial landmark technique revealed that the left eyebrow displayed stronger intensity during spontaneous smiles than the right eyebrow. These findings suggest a potential application of landmark based emotion recognition that spontaneous smiles can be distinguished from posed smiles via measuring relative intensities between the upper and lower face with a focus on left-sided asymmetry in the upper region.


2003 ◽  
Vol 40 (5) ◽  
pp. 523-529 ◽  
Author(s):  
A. Ayoub ◽  
A. Garrahy ◽  
C. Hood ◽  
J. White ◽  
M. Bock ◽  
...  

Objective The aim of this study was to assess the accuracy of a newly developed three-dimensional (3D) imaging system in recording facial morphology. Methods Twenty-one infants with cleft lip each had a full-face alginate impression taken at the time of primary lip repair, and a stone cast was constructed from each impression. Five anthropometric points were marked on each cast. Each cast was digitized, and the 3D co-ordinates of the five points were obtained using a co-ordinate measuring machine (CMM, Ferranti) of documented accuracy (9.53 μm). Each cast was scanned in four positions using a computerized stereophotogrammetry (C3D) system. The five points were located on the 3D images, and their 3D co-ordinates were extracted by three operators. The co-ordinate systems produced by C3D were aligned, via translation and rotation, to match the CMM co-ordinate system using partial ordinary procrustes analysis. The displacements of the adjusted C3D co-ordinates from the reference co-ordinates were then measured. Three different types of errors were identified: operator, system, and registration errors. Results Operator error was within 0.2 mm of the true co-ordinates of the landmarks. C3D was accurate within 0.4 mm. The average displacement of points over the 21 casts at four positions for the three operators was 0.79 mm (median 0.68). Conclusions The presented 3D imaging system is reliable in recording facial deformity and could be utilized in recording cleft deformities and measuring the changes following surgery


Author(s):  
R. L. Palmer ◽  
P. Helmholz ◽  
G. Baynam

Abstract. Facial appearance has long been understood to offer insight into a person’s health. To an experienced clinician, atypical facial features may signify the presence of an underlying rare or genetic disease. Clinicians use their knowledge of how disease affects facial appearance along with the patient’s physiological and behavioural traits, and their medical history, to determine a diagnosis. Specialist expertise and experience is needed to make a dysmorphological facial analysis. Key to this is accurately assessing how a face is significantly different in shape and/or growth compared to expected norms. Modern photogrammetric systems can acquire detailed 3D images of the face which can be used to conduct a facial analysis in software with greater precision than can be obtained in person. Measurements from 3D facial images are already used as an alternative to direct measurement using instruments such as tape measures, rulers, or callipers. However, the ability to take accurate measurements – whether virtual or not – presupposes the assessor’s facility to accurately place the endpoints of the measuring tool at the positions of standardised anatomical facial landmarks. In this paper, we formally introduce Cliniface – a free and open source application that uses a recently published highly precise method of detecting facial landmarks from 3D facial images by non-rigidly transforming an anthropometric mask (AM) to the target face. Inter-landmark measurements are then used to automatically identify facial traits that may be of clinical significance. Herein, we show how non-experts with minimal guidance can use Cliniface to extract facial anthropometrics from a 3D facial image at a level of accuracy comparable to an expert. We further show that Cliniface itself is able to extract the same measurements at a similar level of accuracy – completely automatically.


1994 ◽  
Vol 31 (2) ◽  
pp. 116-121 ◽  
Author(s):  
Frank Ras ◽  
Luc L.M.H. Habets ◽  
Floris C. Van Ginkel ◽  
Birte Prahl-Andersen

The purpose of the present study was to describe facial asymmetry in three dimensions in individuals with an operated complete unilateral cleft lip and palate (UCLP) and in individuals without craniofacial anomalies (controls). Three-dimensional coordinates for 16 bilateral and 10 midsagittal facial landmarks were determined for the UCLP group (N=49) and the control group (N=80) by means of stereophotogrammetry. The total asymmetry was measured and resolved for transverse, vertical, and sagittal components. It can be concluded that all three components are Important in studies on facial asymmetry. Individuals with UCLP show more facial asymmetry in the vertical direction than controls. They demonstrate more facial asymmetry in the region related to the cleft than controls. And, males in general demonstrate more asymmetry of the nose than females.


2021 ◽  
Author(s):  
Tao Tian ◽  
Han-yao Huang ◽  
Wei Wang ◽  
Bing Shi ◽  
Qian Zheng ◽  
...  

Abstract Background: The objective was to clarify the effect of alveolar cleft bone graft on maxillofacial biomechanical stabilities, the key areas when bone grafting and in which should be supplemented with bone graft once bone resorption occurred in UCCLP (Unilateral Complete Cleft Lip and Palate).Methods: Maxillofacial CAD (Computer Aided Design) models of non-bone graft and full maxilla cleft, full alveolar cleft bone graft, bone graft in other sites of the alveolar cleft were acquired by processing the UCCLP maxillofacial CT data in three-dimensional modeling softwares. The maxillofacial bone equivalent (EQV) stresses and bone suture EQV strains under occlusal states were obtained in the finite element analysis software.Results: Under corresponding occlusal states, the EQV stresses of maxilla, pterygoid process of sphenoid bone on the corresponding side and anterior alveolar arch on the non-cleft side were higher than other maxillofacial bones, the EQV strains of nasomaxillary, zygomaticomaxillary and pterygomaxillary suture on the corresponding side were higher than other maxillofacial bone sutures. The mean EQV strains of nasal raphe, the maximum EQV stresses of posterior alveolar arch on the non-cleft side, the mean and maximum EQV strains of nasomaxillary suture on the non-cleft side in full alveolar cleft bone graft model were all significantly lower than those in non-bone graft model. The mean EQV stresses of bilateral anterior alveolar arches, the maximum EQV stresses of maxilla and its alveolar arch on the cleft side in the model with bone graft in lower 1/3 of the alveolar cleft were significantly higher than those in full alveolar cleft bone graft model.Conclusions: For UCCLP, bilateral maxillae, pterygoid processes of sphenoid bones and nasomaxillary, zygomaticomaxillary, pterygomaxillary sutures, anterior alveolar arch on the non-cleft side are the main occlusal load bearing structures before and after alveolar cleft bone graft. Alveolar cleft bone graft mainly affects biomechanical stabilities of nasal raphe and posterior alveolar arch, nasomaxillary suture on the non-cleft side. The areas near nasal floor and in the middle of the alveolar cleft are the key sites when bone grafting, and should be supplemented with bone graft when the bone resorbed in these areas.


Sign in / Sign up

Export Citation Format

Share Document