scholarly journals Bench to Bedside of Neural Stem Cell in Traumatic Brain Injury

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Solomon O. Ugoya ◽  
Jian Tu

Traumatic brain injury (TBI) is one of the leading causes of major disability and death worldwide. Neural stem cells (NSCs) have recently been shown to contribute to the cellular remodelling that occurs following TBI and attention has been drawn to the area of neural stem cell as possible therapy for TBI. The NSCs may play an important role in the treatment of TBI by replacing the damaged cells and eventual remyelination. This paper summarized a critical assessment of recent data and developed a view comprising of six points to possible quality translation of NSCs in TBI.

Neurotrauma ◽  
2018 ◽  
pp. 373-386
Author(s):  
Dong Sun

Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rates after TBI, there is no effective treatment to improve the neural structural repair and functional recovery of patients. Neural regeneration through neural stem cells, either by stimulating endogenous neural stem cells or by stem cell transplantation, has gained increasing attention as a potential strategy to repair and regenerate the injured brain. This chapter summarizes strategies that have been explored to enhance endogenous neural stem cells-mediated regeneration and recent developments in cell transplantation studies for post-TBI brain repair with varying types of cell sources.


Author(s):  
Eunyoung Park ◽  
Johnathan G. Lyon ◽  
Melissa Alvarado‐Velez ◽  
Martha I. Betancur ◽  
Nassir Mokarram ◽  
...  

2021 ◽  
Author(s):  
Lianxu Cui ◽  
Yasmeen Saeed ◽  
Haomin Li ◽  
Jingli Yang

Traumatic brain injury (TBI) is a serious health concern, yet there is a lack of standardized treatment to combat its long-lasting effects. The objective of the present study was to provide an overview of the limitation of conventional stem cell therapy in the treatment of TBI and to discuss the application of novel acellular therapies and their advanced strategies to enhance the efficacy of stem cells derived therapies in the light of published study data. Moreover, we also discussed the factor to optimize the therapeutic efficiency of stem cell-derived acellular therapy by overcoming the challenges for its clinical translation. Hence, we concluded that acellular therapy possesses the potential to bring a breakthrough in the field of regenerative medicine to treat TBI.


2020 ◽  
Author(s):  
Anna Badner ◽  
Emily K. Reinhardt ◽  
Theodore V. Nguyen ◽  
Nicole Midani ◽  
Andrew T. Marshall ◽  
...  

AbstractHuman neural stem cells (hNSCs) have potential as a cell therapy following traumatic brain injury (TBI). While various studies have demonstrated the efficacy of NSCs from on-going culture, there is a significant gap in our understanding of freshly thawed cells from cryobanked stocks – a more clinically-relevant source. To address these shortfalls, the therapeutic potential of our previously validated Shef-6.0 human embryonic stem cell (hESC)-derived hNSC line was tested following long-term cryostorage and thawing prior to transplant. Immunodeficient athymic nude rats received a moderate unilateral controlled cortical impact (CCI) injury. At 4-weeks post-injury, 6×105 freshly thawed hNSCs were transplanted into six injection sites (2 ipsi- and 4 contra-lateral) with 53.4% of cells surviving three months post-transplant. Interestingly, most hNSCs were engrafted in the meninges and the lining of lateral ventricles, associated with high CXCR4 expression and a chemotactic response to SDF1alpha (CXCL12). While some expressed markers of neuron, astrocyte, and oligodendrocyte lineages, the majority remained progenitors, identified through doublecortin expression (78.1%). Importantly, transplantation resulted in improved spatial learning and memory in Morris water maze navigation and reduced risk-taking behavior in an elevated plus maze. Investigating potential mechanisms of action, we identified an increase in ipsilateral host hippocampus cornu ammonis (CA) neuron survival, contralateral dentate gyrus (DG) volume and DG neural progenitor morphology as well as a reduction in neuroinflammation. Together, these findings validate the potential of hNSCs to restore function after TBI and demonstrate that long-term bio-banking of cells and thawing aliquots prior to use may be suitable for clinical deployment.Significance StatementThere is no cure for chronic traumatic brain injury (TBI). While human neural stem cells (hNSCs) offer a potential treatment, no one has demonstrated efficacy of thawed hNSCs from long-term cryobanked stocks. Frozen aliquots are critical for multisite clinical trials, as this omission impacted the use of MSCs for graft versus host disease. This is the first study to demonstrate the efficacy of thawed hNSCs, while also providing support for novel mechanisms of action – linking meningeal and ventricular engraftment to reduced neuroinflammation and improved hippocampal neurogenesis. Importantly, these changes also led to clinically relevant effects on spatial learning/memory and risk-taking behavior. Together, this new understanding of hNSCs lays a foundation for future work and improved opportunities for patient care.


2006 ◽  
Vol 201 (2) ◽  
pp. 281-292 ◽  
Author(s):  
J GAO ◽  
D PROUGH ◽  
D MCADOO ◽  
J GRADY ◽  
M PARSLEY ◽  
...  

The Lancet ◽  
2014 ◽  
Vol 383 ◽  
pp. S18 ◽  
Author(s):  
Aminul Ahmed ◽  
Anan Shtaya ◽  
Malik Zaben ◽  
William Gray

2019 ◽  
Vol 116 (16) ◽  
pp. 8000-8009 ◽  
Author(s):  
Jose L. Nieto-González ◽  
Leonardo Gómez-Sánchez ◽  
Fabiola Mavillard ◽  
Pedro Linares-Clemente ◽  
María C. Rivero ◽  
...  

Neural stem cells continuously generate newborn neurons that integrate into and modify neural circuitry in the adult hippocampus. The molecular mechanisms that regulate or perturb neural stem cell proliferation and differentiation, however, remain poorly understood. Here, we have found that mouse hippocampal radial glia-like (RGL) neural stem cells express the synaptic cochaperone cysteine string protein-α (CSP-α). Remarkably, in CSP-α knockout mice, RGL stem cells lose quiescence postnatally and enter into a high-proliferation regime that increases the production of neural intermediate progenitor cells, thereby exhausting the hippocampal neural stem cell pool. In cell culture, stem cells in hippocampal neurospheres display alterations in proliferation for which hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is the primary cause of neurogenesis deregulation in the absence of CSP-α. In addition, RGL cells lose quiescence upon specific conditional targeting of CSP-α in adult neural stem cells. Our findings demonstrate an unanticipated cell-autonomic and circuit-independent disruption of postnatal neurogenesis in the absence of CSP-α and highlight a direct or indirect CSP-α/mTOR signaling interaction that may underlie molecular mechanisms of brain dysfunction and neurodegeneration.


2020 ◽  
Vol 91 (4) ◽  
pp. 396-401 ◽  
Author(s):  
Keith W Muir ◽  
Diederik Bulters ◽  
Mark Willmot ◽  
Nikola Sprigg ◽  
Anand Dixit ◽  
...  

BackgroundHuman neural stem cell implantation may offer improved recovery from stroke. We investigated the feasibility of intracerebral implantation of the allogeneic human neural stem cell line CTX0E03 in the subacute—chronic recovery phase of stroke and potential measures of therapeutic response in a multicentre study.MethodsWe undertook a prospective, multicentre, single-arm, open-label study in adults aged >40 years with significant upper limb motor deficits 2–13 months after ischaemic stroke. 20 million cells were implanted by stereotaxic injection to the putamen ipsilateral to the cerebral infarct. The primary outcome was improvement by 2 or more points on the Action Research Arm Test (ARAT) subtest 2 at 3 months after implantation.FindingsTwenty-three patients underwent cell implantation at eight UK hospitals a median of 7 months after stroke. One of 23 participants improved by the prespecified ARAT subtest level at 3 months, and three participants at 6 and 12 months. Improvement in ARAT was seen only in those with residual upper limb movement at baseline. Transient procedural adverse effects were seen, but no cell-related adverse events occurred up to 12 months of follow-up. Two deaths were unrelated to trial procedures.InterpretationAdministration of human neural stem cells by intracerebral implantation is feasible in a multicentre study. Improvements in upper limb function occurred at 3, 6 and 12 months, but not in those with absent upper limb movement at baseline, suggesting a possible target population for future controlled trials.FundingReNeuron, Innovate UK (application no 32074-222145).Trial registration numberEudraCT Number: 2012-003482-18


Sign in / Sign up

Export Citation Format

Share Document