scholarly journals Gauge-Higgs Unification Models in Six Dimensions withS2/Z2Extra Space and GUT Gauge Symmetry

2012 ◽  
Vol 2012 ◽  
pp. 1-39
Author(s):  
Cheng-Wei Chiang ◽  
Takaaki Nomura ◽  
Joe Sato

We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime withS2/Z2topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extraS2/Z2space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12) gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with theSU(3)×SU(2)L×U(1)Y(×U(1)2)symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

2001 ◽  
Vol 16 (13) ◽  
pp. 835-844
Author(s):  
ILIA GOGOLADZE ◽  
MIRIAN TSULAIA

We suggest a new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U (1)A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the value of the corresponding Fayet–Illiopoulos ξ-term.


1996 ◽  
Vol 11 (29) ◽  
pp. 5221-5243 ◽  
Author(s):  
ANIRBAN KUNDU ◽  
BISWARUP MUKHOPADHYAYA

We have investigated some phenomenological aspects of an SU (2) × U (1) scenario where scalars belonging to arbitrary representations of SU(2) are involved in electroweak symmetry breaking. The resulting interaction terms are derived. Some constraints are obtained on the arbitrary scalar sector from the requirement of tree-level unitarity in longitudinal gauge boson scattering. We also show that there is a remarkable complimentarity between the constraints on a general structure from the ρ parameter and those from precision measurement of the [Formula: see text] vertex. Finally, some salient features about the production of such Higgs bosons in e+e− collision are discussed.


2003 ◽  
Vol 18 (14) ◽  
pp. 967-975 ◽  
Author(s):  
J. G. KÖRNER ◽  
CHUN LIU

A supersymmetric model with two copies of the Standard Model gauge groups is constructed in the gauge mediated supersymmetry breaking scenario. The supersymmetry breaking messengers are in a simple form. The Standard Model is obtained after first step gauge symmetry breaking. In the case of one copy of the gauge interactions being strong, a scenario of electroweak symmetry breaking is discussed, and the gauginos are generally predicted to be heavier than the sfermions.


2002 ◽  
Vol 17 (23) ◽  
pp. 3300-3317
Author(s):  
FABIO ZWIRNER

The present experimental and theoretical knowledge of the physics of electroweak symmetry breaking is reviewed. Data still favor a light Higgs boson, of a kind that can be comfortably accommodated in the Standard Model or in its Minimal Supersymmetric extension, but exhibit a non-trivial structure that leaves some open questions. The available experimental information may still be reconciled with the absence of a light Higgs boson, but the price to pay looks excessive. Recent theoretical ideas, linking the weak scale with the size of possible extra spatial dimensions, are briefly mentioned. It is stressed once more that experiments at high-energy colliders, such as the Tevatron and the LHC, are the crucial tool for eventually solving the Higgs puzzle.


2006 ◽  
Vol 21 (40) ◽  
pp. 3009-3020
Author(s):  
M. ARGYROU ◽  
A. KATSIKATSOU ◽  
I. MALAMOS

The one-loop effective potential is a powerful tool in studying the electroweak symmetry breaking of supersymmetric theories, whose precise calculation may have important phenomenological consequences. In this work, we are correctly treating the contribution of the Higgs sector to the effective potential and refine the radiative corrections to the Higgs mixing parameter μ, which is known to affect greatly the supersymmetric spectrum. Working at the average stop scale to minimize the effect of the stop sector, we find additional corrections which can play a dominant role in the focus point region of the parameter space of the MSSM. The comparison of our results with those of the literature is discussed. We also discuss the gauge dependence of the effective potential and its effect on the μ parameter in analyses where this is determined from the one-loop minimization conditions of the effective potential.


2008 ◽  
Vol 23 (22) ◽  
pp. 3509-3523 ◽  
Author(s):  
L. CLAVELLI

From several points of view, it is strongly suggested that the current universe is unstable and will ultimately decay to one that is exactly supersymmetric (SUSY). The possibility that atoms and molecules form in this future universe requires that the degenerate electron/selectron mass is non-zero and hence that electroweak symmetry breaking (EWSB) survives the phase transition to exact SUSY. However, the Minimal Supersymmetric Standard Model (MSSM) and several of its extensions have no EWSB in the SUSY limit. Among the extended Higgs models that have been discussed, one stands out in this regard. The Higgs sector that is revealed at the Large Hadron Collider (LHC) will therefore have implications for the future universe. We also address the question as to whether the transition to the exact SUSY phase with EWSB is exothermic.


2015 ◽  
Vol 30 (03) ◽  
pp. 1530019
Author(s):  
Piyush Kumar

In recent years it has been realized that in string/M theories compactified to four dimensions which satisfy cosmological constraints, it is possible to make some generic predictions for particle physics: a nonthermal cosmological history before primordial nucleosynthesis, a scale of supersymmetry breaking which is "high" as in gravity mediation, and scalar superpartners too heavy to be produced at the LHC (although gluino production is predicted in many cases). When the matter and gauge spectrum below the compactification scale is that of the MSSM, a robust prediction of about 125 GeV for the Higgs boson mass, as well as predictions for future precision measurements, can be made. As a prototypical example, M theory compactified on a manifold of G2 holonomy leads to a good candidate for our "string vacuum", with the TeV scale emerging from the Planck scale, a de Sitter vacuum, robust electroweak symmetry breaking, and solutions of the weak and strong CP problems. In this article we review how these and other results are derived, from the key theoretical ideas to the final phenomenological predictions.


1994 ◽  
Vol 09 (21) ◽  
pp. 1933-1943
Author(s):  
S.G. KOVALENKO

A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model.


Sign in / Sign up

Export Citation Format

Share Document