scholarly journals Binary Mixtures of Nonyl Phenol with Alkyl Substituted Anilines as Corrosion Inhibitors for Mild Steel in Acidic Medium

2012 ◽  
Vol 9 (1) ◽  
pp. 149-160 ◽  
Author(s):  
H. S. Shukla ◽  
N. Haldar ◽  
G. Udaybhanu

The present study deals with the evaluation of the corrosion inhibition effectiveness of the two binary mixtures of nonyl phenol (NPH) with 2, 4 dimethyl aniline (DMA) and 2 ethyl aniline (EA) at different concentration ratios (from 1:7 to 7:1) for mild steel in H2SO4(pH=1) solution by weight loss and potentiodynamic polarization method. Corrosion inhibition ability of the compounds has been tested at different exposure periods (6 h to 24 h) and at different temperatures (303 K to 333 K). The binary mixture of NPH and EA (at 7:1 concentration ratio) has afforded maximum inhibition (IE% 93.5%) at 6 h exposure period and at room temperature. The adsorption of both the inhibitors is found to accord with Temkin adsorption isotherm. Potentiodynamic polarization study reveals that the tested inhibitors are mixed type inhibitor and preferentially act on cathodic areas. Electrochemical impedance study suggests formation of an inhibition layer by the adsorption of the inhibitors on the metal surface. An adsorption model of the inhibitor molecules on the metal surface has been proposed after immersion test in the inhibited acid showed characteristic shift of N-H and O-H bond frequencies towards lower side compared to that of the respective pure samples which indicated the donation of electron pair through N and O atom of the inhibitor molecule in the surface adsorption phenomena. SEM study has revealed formation of semi globular inhibitor products on the metal surface. The comparisons of the protection efficiencies of these compounds according to their relative electron density on the adsorption centre and projected molecular area of the inhibitor molecules have been made.

Author(s):  
V. Dharmalingam ◽  
P. Arockia Sahayaraj ◽  
A. John Amalraj ◽  
R. Shobana ◽  
R. Mohan

The goal of studying corrosion process is to find means of minimizing corrosion or prevent it from occurring. The use of inhibitors is one of the most popular methods for corrosion protection. A protective film has been formed on the surface of the mild steel in a neutral aqueous environment using a synergistic mixture of an eco-friendly inhibitor viz., Potassium Sodium Tartrate (SPT) along with polyacrylic acid (PAA) and Zn2+ ions. The inhibiting effect of SPT, PAA and Zn2+ ions have been investigated by gravimetric studies, Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The investigations revealed that SPT acts as an excellent synergist in corrosion inhibition. Optimum concentrations of all the three components of the ternary formulation are established by gravimetric studies. Potentiodynamic polarization studies inferred that this mixture functions as a cathodic inhibitor. EIS studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of mild steel. Surface characterization techniques (FTIR, SEM, AFM) are also used to ascertain the nature of the protective film. The mechanical aspect of corrosion inhibition is proposed.


2018 ◽  
Vol 65 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Mohd Rashid ◽  
Umesh S. Waware ◽  
Afidah A. Rahim ◽  
A.M.S. Hamouda

Purpose The purpose of this study is to compare the inhibitive effect of polyaniline (PAni) and N-cetyl-N,N,N trimethyl ammonium bromide (CTAB)-stabilized PAni in a hydrochloric acid (HCl) medium. Design/methodology/approach PAni has been deposited potentiodynamically on mild steel in the presence of CTAB as a stabilizing agent to achieve high corrosion inhibition performance by the polymer deposition. The corrosion inhibition studies of CTAB-stabilized PAni inhibitor in 0.1 M HCl acidic solution was carried out by electrochemical methods, namely, open-circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy technique. Findings The results of electrochemical studies have shown that the CTAB-stabilized PAni inhibitor has higher corrosion efficiency than PAni on mild steel in 0.1 M HCl solution. The maximum per cent efficiency evaluated using the potentiodynamic polarization method is approximately 91.9. Originality/value CTAB-stabilized PAni has never been studied as a corrosion inhibitor for mild steel in an acidic medium. The investigations demonstrate relatively the better corrosion inhibition efficiency and high dispersion of the polymer in the acidic medium.


2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Bishir Usman ◽  
Hasmerya Maarof ◽  
Hassan H. Abdallah ◽  
Rosmahida Jamaludin ◽  
Mohamed Noor Hasan ◽  
...  

Corrosion inhibition of mild steel in 0.5M H2SO4 at 30oC with thiophene-2- ethylamine (TEA) as inhibitor has been assess by quantitative structure activity relation (QSAR) model and quantum chemical calculations. The results were evaluated using weight loss and electrochemical methods such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed good performance of TEA in corrosion protection which behaves as mixed inhibitor from PDP. The micrograph from FESEM and EDX dot mapping showed that the inhibitor adsorbed onto the metal surface with different distribution for S, C and N atoms which indicate less damage on the metal surface in the presence of TEA.


Author(s):  
Moussa Ouakki ◽  
Mouhsine Galai ◽  
Mohammed Cherkaoui ◽  
Mohamed Ebn Touhami ◽  
E. H. Rifi ◽  
...  

The corrosion inhibition of mild steel in hydrochloric, sulfuric, and phosphoric acids solutions containing a mineral compound-based phosphate (apatite) was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. Potentio-dynamic polarization measurements reveal that the inhibition efficiency increased with the concentration of the apatite, which appears to be a cathodic type inhibitor in the three mediums. Electrochemical impedance spectroscopy confirms this result; indeed, the transfer resistance increases with apatite concentration. The authors note that the double layer capacitance decreases simultaneously suggesting the formation of an adsorbed layer on the mild steel surface. The inhibition mechanism has been elucidated by a thermodynamic study, which showed that the film was formed by physi-sorption. The adsorption model obeys to the Langmuir adsorption isotherm. The parameters of activation energy were evaluated and discussed.


2011 ◽  
Vol 8 (2) ◽  
pp. 621-628 ◽  
Author(s):  
M. Anwar Sathiq ◽  
A. Jamal Abdul Nasser ◽  
P. Mohamed Sirajudeen

The influence ofN-(l-morpholinobenzyl)urea (MBU) on corrosion inhibition of mild steel in 1 M HCl was studied by weight loss, effect of temperature, potentiodynamic polarization and electrochemical impedance spectroscopy. The experimental results showed that the inhibition efficiency increases with increasing of MBU concentrations but decreases with increasing temperatures. The adsorption of MBU on the mild steel surface obeyed the Temkin’s adsorption isotherm. Potentiodynamic polarization curves showed that MBU acted as a cathodic inhibitor predominantly in hydrochloric acid. This was supported by the impedance measurements which showed a change in the charge transfer resistance and double layer capacitance indicating adsorption of MBU on the mild steel surface. Protective film formation against the acid attack is confirmed by SEM.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 357 ◽  
Author(s):  
Hassane Lgaz ◽  
Sheerin Masroor ◽  
Maryam Chafiq ◽  
Mohamed Damej ◽  
Ameni Brahmia ◽  
...  

This research aimed to develop a better understanding of the corrosion inhibition of the mild steel in acidic medium by new organic molecules. For this purpose, two new compounds namely, 2,3-dihydrobenzo[4,5]imidazo[2,1-b]thiazole (2-BIT) and 3,4-dihydro-2H-benzo[4,5]imidazo[2,1-b]thiazole (3-BIT) were synthesized and evaluated for mild steel (MS) corrosion in HCl. Analyses were carried out using weight loss measurements, electrochemical techniques, and scanning electron microscope (SEM). The adsorption of inhibitors onto the steel surface follows the Langmuir adsorption model. Generally, results showed that the corrosion inhibition efficiency of the investigated molecules was found to increase with increased concentration of inhibitors. Electrochemical tests, i.e., electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) techniques, showed that the addition of our investigated inhibitors decreases the dissolution of the metal and generally act as mixed-type inhibitors. In addition, the influence of temperature (from 303 to 333 K) on the corrosion inhibition was studied, and the results demonstrated that with an increase in temperature, the inhibition efficiency decrease. SEM results confirmed that the inhibition process is due to a protective film that prevents corrosion. Similarly, the results showed that the inhibitory efficiencies reach 93% at 5 × 10−3 M in the case of inhibitor 3-BIT. These results revealed that this compound could effectively control and reduce the corrosion rate of mild steel in the corrosion test solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nimmy Kuriakose ◽  
Joby Thomas Kakkassery ◽  
Vinod P. Raphael ◽  
Shaju K. Shanmughan

The corrosion inhibition efficiency of thiophene-2-carbaldehyde tryptophan (T2CTRY) on mild steel (MS) in 1 M HCl solution has been investigated and compared using weight loss measurements, electrochemical impedance spectroscopy, and potentiodynamic polarization analysis. The Schiff base exhibited very good corrosion inhibition on mild steel in HCl medium and the inhibition efficiency increased with the increase in concentration of the inhibitor. The adsorption of the inhibitor on the surface of the corroding metal obeys Freundlich isotherm. Thermodynamic parameters (Kads, ΔG ads0) were calculated using adsorption isotherm. Polarization studies revealed that T2CTRY acts as a mixed type inhibitor. A maximum of 96.2% inhibition efficiency was achieved by EIS studies at a concentration of 1 mM.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
P. Arockiasamy ◽  
X. Queen Rosary Sheela ◽  
G. Thenmozhi ◽  
M. Franco ◽  
J. Wilson Sahayaraj ◽  
...  

The inhibiting effect of methanolic extract ofMollugo cervianaplant on the corrosion of mild steel in 1 M HCl solution has been investigated by different techniques like potentiodynamic polarization, electrochemical impedance spectroscopy, and weight loss methods for five different concentrations of plant extract ranging from 25 to 1000 mg/L. The results indicated that the corrosion inhibition efficiency increased on increasing plant extract concentration till 500 mg/L and decreased on further increasing concentration. The extract was a mixed type inhibitor with the optimum inhibition concentration of 500 mg/L in potentiodynamic polarization. The adsorption of the plant extract on the mild steel surface was found to obey Langmuir adsorption isotherm. Surface analysis was also carried out to find out the surface morphology of the mild steel in the presence and in the absence of the inhibitor to find out its efficiency. The obtained results showed that theMollugo cervianaextract acts as a good inhibitor for the corrosion of mild steel in 1 M HCl solution.


2011 ◽  
Vol 239-242 ◽  
pp. 1409-1413
Author(s):  
Hong Mei Wang ◽  
Ke Long Huang ◽  
Zhi Ping Zhu

The inhibiting behavior of 1-ethyl-3-butylbenzotriazolium ionic liquids,[C2Bt][Br] ,on mild steel corrosion in 5 wt.% HCl as corroding solution was investigated using weight loss,potentiodynamic polarization and electrochemical impedance measurements. The obtained results indicated that [C2Bt][Br] is a good inhibitor for the mild steel in 5 wt.% HCl solution. The inhibition efficiency increased with an increase of inhibitive concentration. Potentiodynamic polarization data indicated that the [C2Bt][Br] acted essentially as a mixed-type inhibitor. The electrochemical impedance study showed that corrosion inhibition took place by adsorption.


2011 ◽  
Vol 194-196 ◽  
pp. 44-51
Author(s):  
Fei Ran Xu ◽  
Sheng Tao Zhang ◽  
Xiao Li

The corrosion inhibition of 45# mild steel in 3%HCL solution by norfloxacin has been studied by weight loss measurement, Tafel polarization, electrochemical impedance spectroscopy (EIS) and quantum chemical study. The inhibitor of norfloxacin shows 93.2% inhibition efficiency at optimum concentration 400mg/L. The polarization studies suggest that norfloxacin is the mixed-type inhibitor for 45# carbon steel in 3%HCL. Electrochemical impedance spectroscopy techniques are also used to investigate the mechanism of corrosion inhibition. What is more, the adsorption model obeys Langmuir adsorption isotherm at 298K. And the calculated quantum chemical also suggests that norfloxacin have excellent inhibition properties.


Sign in / Sign up

Export Citation Format

Share Document