scholarly journals The Corrosion Inhibition Performance of Polyacrylic Acid with Potassium Sodium Tartrate and Zn2+ for Corrosion Control of Mild Steel in Aqueous Solution

Author(s):  
V. Dharmalingam ◽  
P. Arockia Sahayaraj ◽  
A. John Amalraj ◽  
R. Shobana ◽  
R. Mohan

The goal of studying corrosion process is to find means of minimizing corrosion or prevent it from occurring. The use of inhibitors is one of the most popular methods for corrosion protection. A protective film has been formed on the surface of the mild steel in a neutral aqueous environment using a synergistic mixture of an eco-friendly inhibitor viz., Potassium Sodium Tartrate (SPT) along with polyacrylic acid (PAA) and Zn2+ ions. The inhibiting effect of SPT, PAA and Zn2+ ions have been investigated by gravimetric studies, Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The investigations revealed that SPT acts as an excellent synergist in corrosion inhibition. Optimum concentrations of all the three components of the ternary formulation are established by gravimetric studies. Potentiodynamic polarization studies inferred that this mixture functions as a cathodic inhibitor. EIS studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of mild steel. Surface characterization techniques (FTIR, SEM, AFM) are also used to ascertain the nature of the protective film. The mechanical aspect of corrosion inhibition is proposed.

2011 ◽  
Vol 8 (2) ◽  
pp. 621-628 ◽  
Author(s):  
M. Anwar Sathiq ◽  
A. Jamal Abdul Nasser ◽  
P. Mohamed Sirajudeen

The influence ofN-(l-morpholinobenzyl)urea (MBU) on corrosion inhibition of mild steel in 1 M HCl was studied by weight loss, effect of temperature, potentiodynamic polarization and electrochemical impedance spectroscopy. The experimental results showed that the inhibition efficiency increases with increasing of MBU concentrations but decreases with increasing temperatures. The adsorption of MBU on the mild steel surface obeyed the Temkin’s adsorption isotherm. Potentiodynamic polarization curves showed that MBU acted as a cathodic inhibitor predominantly in hydrochloric acid. This was supported by the impedance measurements which showed a change in the charge transfer resistance and double layer capacitance indicating adsorption of MBU on the mild steel surface. Protective film formation against the acid attack is confirmed by SEM.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Akbar Ali Samsath Begum ◽  
Raja Mohamed Abdul Vahith ◽  
Vijay Kotra ◽  
Mohammed Rafi Shaik ◽  
Abdelatty Abdelgawad ◽  
...  

In the present study, the corrosion inhibition effect of Spilanthes acmella aqueous leaves extract (SA-LE) on mild steel was investigated in 1.0 M HCl solution at different temperature using weight loss, Tafel polarization, linear polarization resistance (LPR), and electrochemical impedance (EIS) measurements. Adsorption of inhibitor on the surface of the mild steel obeyed both Langmuir and Temkin adsorption isotherms. The thermodynamic and kinetic parameters were also calculated to determine the mechanism of corrosion inhibition. The inhibition efficiency was found to increase with an increase in the inhibitor concentration i.e., Spilanthes acmella aqueous leaves extract, however, the inhibition efficiency decreased with an increase in the temperature. The phytochemical constituents with functional groups including electronegative hetero atoms such as N, O, and S in the extract adsorbed on the metal surface are found responsible for the effective performance of the inhibitor, which was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopic (UV-Vis) studies. Protective film formation against corrosion was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle studies. The result shows that the leaves extract acts as corrosion inhibitor and is able to promote surface protection by blocking active sites on the metal.


2018 ◽  
Vol 65 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Mohd Rashid ◽  
Umesh S. Waware ◽  
Afidah A. Rahim ◽  
A.M.S. Hamouda

Purpose The purpose of this study is to compare the inhibitive effect of polyaniline (PAni) and N-cetyl-N,N,N trimethyl ammonium bromide (CTAB)-stabilized PAni in a hydrochloric acid (HCl) medium. Design/methodology/approach PAni has been deposited potentiodynamically on mild steel in the presence of CTAB as a stabilizing agent to achieve high corrosion inhibition performance by the polymer deposition. The corrosion inhibition studies of CTAB-stabilized PAni inhibitor in 0.1 M HCl acidic solution was carried out by electrochemical methods, namely, open-circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy technique. Findings The results of electrochemical studies have shown that the CTAB-stabilized PAni inhibitor has higher corrosion efficiency than PAni on mild steel in 0.1 M HCl solution. The maximum per cent efficiency evaluated using the potentiodynamic polarization method is approximately 91.9. Originality/value CTAB-stabilized PAni has never been studied as a corrosion inhibitor for mild steel in an acidic medium. The investigations demonstrate relatively the better corrosion inhibition efficiency and high dispersion of the polymer in the acidic medium.


2012 ◽  
Vol 9 (1) ◽  
pp. 149-160 ◽  
Author(s):  
H. S. Shukla ◽  
N. Haldar ◽  
G. Udaybhanu

The present study deals with the evaluation of the corrosion inhibition effectiveness of the two binary mixtures of nonyl phenol (NPH) with 2, 4 dimethyl aniline (DMA) and 2 ethyl aniline (EA) at different concentration ratios (from 1:7 to 7:1) for mild steel in H2SO4(pH=1) solution by weight loss and potentiodynamic polarization method. Corrosion inhibition ability of the compounds has been tested at different exposure periods (6 h to 24 h) and at different temperatures (303 K to 333 K). The binary mixture of NPH and EA (at 7:1 concentration ratio) has afforded maximum inhibition (IE% 93.5%) at 6 h exposure period and at room temperature. The adsorption of both the inhibitors is found to accord with Temkin adsorption isotherm. Potentiodynamic polarization study reveals that the tested inhibitors are mixed type inhibitor and preferentially act on cathodic areas. Electrochemical impedance study suggests formation of an inhibition layer by the adsorption of the inhibitors on the metal surface. An adsorption model of the inhibitor molecules on the metal surface has been proposed after immersion test in the inhibited acid showed characteristic shift of N-H and O-H bond frequencies towards lower side compared to that of the respective pure samples which indicated the donation of electron pair through N and O atom of the inhibitor molecule in the surface adsorption phenomena. SEM study has revealed formation of semi globular inhibitor products on the metal surface. The comparisons of the protection efficiencies of these compounds according to their relative electron density on the adsorption centre and projected molecular area of the inhibitor molecules have been made.


2019 ◽  
Vol 66 (6) ◽  
pp. 768-773 ◽  
Author(s):  
P. Satyabama ◽  
Susai Rajendran ◽  
Tuan Anh Nguyen

Purpose This paper aims to evaluate the inhibition efficiency (IE) of oxalate ions in controlling corrosion of aluminum at pH 10. Design/methodology/approach The IE has been determined by the classical weight loss method. The corrosion behavior of aluminum was investigated by using potentiodynamic polarization and electrochemical impedance measurements. Ultra violet (UV)-visible and Fluorescence spectra have been used to analyze the film formed on the aluminum surface after immersion. Findings The maximum IE was 88 per cent, which was offered by a mixture of 250 ppm oxalate ions and 50 ppm [Zn2+]. Potentiodynamic polarization data revealed that the protective film was formed on the metal surface. UV-visible and Fluorescence spectra indicated the presence of Al3+−oxalate complex in the protective film formed on aluminum substrate after immersion in [OX]/[Zn2+] solution. Originality/value The findings of this work shed more light on the corrosion inhibition of aluminum by oxalate self-assembling monolayers.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 357 ◽  
Author(s):  
Hassane Lgaz ◽  
Sheerin Masroor ◽  
Maryam Chafiq ◽  
Mohamed Damej ◽  
Ameni Brahmia ◽  
...  

This research aimed to develop a better understanding of the corrosion inhibition of the mild steel in acidic medium by new organic molecules. For this purpose, two new compounds namely, 2,3-dihydrobenzo[4,5]imidazo[2,1-b]thiazole (2-BIT) and 3,4-dihydro-2H-benzo[4,5]imidazo[2,1-b]thiazole (3-BIT) were synthesized and evaluated for mild steel (MS) corrosion in HCl. Analyses were carried out using weight loss measurements, electrochemical techniques, and scanning electron microscope (SEM). The adsorption of inhibitors onto the steel surface follows the Langmuir adsorption model. Generally, results showed that the corrosion inhibition efficiency of the investigated molecules was found to increase with increased concentration of inhibitors. Electrochemical tests, i.e., electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) techniques, showed that the addition of our investigated inhibitors decreases the dissolution of the metal and generally act as mixed-type inhibitors. In addition, the influence of temperature (from 303 to 333 K) on the corrosion inhibition was studied, and the results demonstrated that with an increase in temperature, the inhibition efficiency decrease. SEM results confirmed that the inhibition process is due to a protective film that prevents corrosion. Similarly, the results showed that the inhibitory efficiencies reach 93% at 5 × 10−3 M in the case of inhibitor 3-BIT. These results revealed that this compound could effectively control and reduce the corrosion rate of mild steel in the corrosion test solution.


2020 ◽  
Vol 11 (1) ◽  
pp. 23-42 ◽  
Author(s):  
K. Alaoui ◽  
Y. El Kacimi ◽  
M. Galai ◽  
H. Serrar ◽  
R. Touir ◽  
...  

AbstractIn this investigation, attempts have been made to study the corrosion inhibition properties of three new triazepine carboxylate compounds for mild steel in 1.0 M hydrochloric acid medium. The evaluation was carried out using mass loss, electrochemical impedance spectroscopy and polarization curves measurement. Impedance diagrams and Bode plots for uninhibited and inhibited systems were analyzed using Zview program. The fitted data observed trails in nearly the same pattern as the experimental results. It is showed that triazepine carboxylate compounds are very good inhibitors for mild steel corrosion in 1.0 M hydrochloric acid medium which act as mixed-type inhibitors. So, the inhibition efficiency was increased with inhibitor concentration in the order Cl–Me–CN > Me–CN > Cl–Me–CO2Et which depended on their molecular structures. Electrochemical impedance spectroscopy showed that all compounds act by the formation of a protective film at the metal surface. Surface analyses via SEM and Optical 3D profilometry were used to investigate the morphology of the steels before and after immersion in 1.0 M HCl solution containing inhibitors. The correspondence between inhibition property and molecular structure of the triazepine carboxylate compounds was investigated, using density functional theory (DFT). Experimental and DFT study was further supported by molecular dynamic simulations study.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nimmy Kuriakose ◽  
Joby Thomas Kakkassery ◽  
Vinod P. Raphael ◽  
Shaju K. Shanmughan

The corrosion inhibition efficiency of thiophene-2-carbaldehyde tryptophan (T2CTRY) on mild steel (MS) in 1 M HCl solution has been investigated and compared using weight loss measurements, electrochemical impedance spectroscopy, and potentiodynamic polarization analysis. The Schiff base exhibited very good corrosion inhibition on mild steel in HCl medium and the inhibition efficiency increased with the increase in concentration of the inhibitor. The adsorption of the inhibitor on the surface of the corroding metal obeys Freundlich isotherm. Thermodynamic parameters (Kads, ΔG ads0) were calculated using adsorption isotherm. Polarization studies revealed that T2CTRY acts as a mixed type inhibitor. A maximum of 96.2% inhibition efficiency was achieved by EIS studies at a concentration of 1 mM.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
P. Arockiasamy ◽  
X. Queen Rosary Sheela ◽  
G. Thenmozhi ◽  
M. Franco ◽  
J. Wilson Sahayaraj ◽  
...  

The inhibiting effect of methanolic extract ofMollugo cervianaplant on the corrosion of mild steel in 1 M HCl solution has been investigated by different techniques like potentiodynamic polarization, electrochemical impedance spectroscopy, and weight loss methods for five different concentrations of plant extract ranging from 25 to 1000 mg/L. The results indicated that the corrosion inhibition efficiency increased on increasing plant extract concentration till 500 mg/L and decreased on further increasing concentration. The extract was a mixed type inhibitor with the optimum inhibition concentration of 500 mg/L in potentiodynamic polarization. The adsorption of the plant extract on the mild steel surface was found to obey Langmuir adsorption isotherm. Surface analysis was also carried out to find out the surface morphology of the mild steel in the presence and in the absence of the inhibitor to find out its efficiency. The obtained results showed that theMollugo cervianaextract acts as a good inhibitor for the corrosion of mild steel in 1 M HCl solution.


2011 ◽  
Vol 239-242 ◽  
pp. 1409-1413
Author(s):  
Hong Mei Wang ◽  
Ke Long Huang ◽  
Zhi Ping Zhu

The inhibiting behavior of 1-ethyl-3-butylbenzotriazolium ionic liquids,[C2Bt][Br] ,on mild steel corrosion in 5 wt.% HCl as corroding solution was investigated using weight loss,potentiodynamic polarization and electrochemical impedance measurements. The obtained results indicated that [C2Bt][Br] is a good inhibitor for the mild steel in 5 wt.% HCl solution. The inhibition efficiency increased with an increase of inhibitive concentration. Potentiodynamic polarization data indicated that the [C2Bt][Br] acted essentially as a mixed-type inhibitor. The electrochemical impedance study showed that corrosion inhibition took place by adsorption.


Sign in / Sign up

Export Citation Format

Share Document