scholarly journals The Protective Effect of Apamin on LPS/Fat-Induced Atherosclerotic Mice

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Soo-Jung Kim ◽  
Ji-Hyun Park ◽  
Kyung-Hyun Kim ◽  
Woo-Ram Lee ◽  
Sok Cheon Pak ◽  
...  

Apamin, a peptide component of bee venom (BV), has anti-inflammatory properties. However, the molecular mechanisms by which apamin prevents atherosclerosis are not fully understood. We examined the effect of apamin on atherosclerotic mice. Atherosclerotic mice received intraperitoneal (ip) injections of lipopolysaccharide (LPS, 2 mg/kg) to induce atherosclerotic change and were fed an atherogenic diet for 12 weeks. Apamin (0.05 mg/kg) was administered by ip injection. LPS-induced THP-1-derived macrophage inflammation treated with apamin reduced expression of tumor necrosis factor (TNF)-α, vascular cell adhesion molecule (VCAM)-1, and intracellular cell adhesion molecule (ICAM)-1, as well as the nuclear factor kappa B (NF-κB) signaling pathway. Apamin decreased the formation of atherosclerotic lesions as assessed by hematoxylin and elastic staining. Treatment with apamin reduced lipids, Ca2+levels, and TNF-αin the serum from atherosclerotic mice. Further, apamin significantly attenuated expression of VCAM-1, ICAM-1, TGF-β1, and fibronectin in the descending aorta from atherosclerotic mice. These results indicate that apamin plays an important role in monocyte/macrophage inflammatory processing and may be of potential value for preventing atherosclerosis.

1988 ◽  
Vol 106 (2) ◽  
pp. 487-503 ◽  
Author(s):  
M Grumet ◽  
GM Edelman

The neuron-glia cell adhesion molecule (Ng-CAM) is present in the central nervous system on postmitotic neurons and in the periphery on neurons and Schwann cells. It has been implicated in binding between neurons and between neurons and glia. To understand the molecular mechanisms of Ng-CAM binding, we analyzed the aggregation of chick Ng-CAM either immobilized on 0.5-micron beads (Covaspheres) or reconstituted into liposomes. The results were correlated with the binding of these particles to different types of cells as well as with cell-cell binding itself. Both Ng-CAM-Covaspheres and Ng-CAM liposomes individually self-aggregated, and antibodies against Ng-CAM strongly inhibited their aggregation; the rate of aggregation increased approximately with the square of the concentration of the beads or the liposomes. Much higher rates of aggregation were observed when the ratio of Ng-CAM to lipid in the liposome was increased. Radioiodinated Ng-CAM on Covaspheres and in liposomes bound both to neurons and to glial cells and in each case antibodies against Ng-CAM inhibited 50-90% of the binding. Control preparations of fibroblasts and meningeal cells did not exhibit significant binding. Adhesion between neurons and glia within and across species (chick and mouse) was explored in cellular assays after defining markers for each cell type, and optimal conditions of shear, temperature, and cell density. As previously noted using chick cells (Grumet, M., S. Hoffman, C.-M. Chuong, and G. M. Edelman. 1984 Proc. Natl. Acad. Sci. USA. 81:7989-7993), anti-Ng-CAM antibodies inhibited neuron-neuron and neuron-glia binding. In cross-species adhesion assays, binding of chick neurons to mouse astroglia and binding of mouse neurons to chick astroglia were both inhibited by anti-Ng-CAM antibodies. To identify whether the cellular ligands for Ng-CAM differed for neuron-neuron and neuron-glia binding, cells were preincubated with specific antibodies, the antibodies were removed by washing, and Ng-CAM-Covasphere binding was measured. Preincubation of neurons with anti-Ng-CAM antibodies inhibited Ng-CAM-Covasphere binding but similar preincubation of astroglial cells did not inhibit binding. In contrast, preincubation of astroglia with anti-astroglial cell antibodies inhibited binding to these cells but preincubation of neurons with these antibodies had no effect. Together with the data on Covaspheres and liposome aggregation, these findings suggested that Ng-CAM-Covaspheres bound to Ng-CAM on neurons but bound to different molecules on astroglia.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Author(s):  
Linzi Sun ◽  
Razie Amraei ◽  
Nader Rahimi

ABSTRACTThe cell adhesion molecule immunoglobulin and proline-rich receptor-1 (IGPR-1) regulates various critical cellular processes including, cell-cell adhesion, mechanosensing and autophagy. However, the molecular mechanisms governing IGPR-1 cell surface expression levels remains unknown. In the present study, we used an in vitro ubiquitination assay and identified ubiquitin E3 ligase NEDD4 and the ubiquitin conjugating enzyme UbcH6 involved in the ubiquitination of IGPR-1. In vitro GST-pulldown and in vivo co-immunoprecipitation assays demonstrated that NEDD4 binds to IGPR-1. Over-expression of wild-type NEDD4 downregulated IGPR-1 and deletion of WW domains (1-4) of NEDD4 revoked its effects on IGPR-1. Similarly, knockdown of NEDD4 increased IGPR-1 levels in A375 melanoma cells. Furthermore, deletion of 57 amino acids encompassing polyproline rich (PPR) motif on the C-terminus of IGPR-1 nullified the binding of NEDD4 with IGPR-1. Moreover, we demonstrate that NEDD4 promotes K48- and K63-dependent polyubiquitination of IGPR-1. The NEDD4-mediated polyubiquitination of IGPR-1 stimulated lysosomal degradation of IGPR-1 as the treatment of cells with the lysosomal inhibitors, bafilomycine and ammonium chloride increased IGPR-1 levels in the HEK-293 cells ectopically expressing IGPR-1 and in multiple human skin melanoma cell lines. Hence, these findings suggest that ubiquitin E3 ligase NEDD4 is a key regulator of IGPR-1 with a significant implication in the therapeutic targeting of IGPR-1.


2002 ◽  
Vol 9 (3) ◽  
pp. 147-159 ◽  
Author(s):  
K. Touyarot ◽  
C. Sandi

Existing evidence indicates that 21-days exposure of rats to restraint stress induces dendritic atrophy in pyramidal cells of the hippocampus. This phenomenon has been related to altered performance in hippocampal-dependent learning tasks. Prior studies have shown that hippocampal expression of cell adhesion molecules is modified by such stress treatment, with the neural cell adhesion molecule (NCAM) decreasing and L1 increasing, their expression, at both the mRNA and protein levels. Given that NCAM comprises several isoforms, we investigated here whether chronic stress might differentially affect the expression of the three major isoforms (NCAM-120, NCAM-140, NCAM-180) in the hippocampus. In addition, as glucocorticoids have been implicated in the deleterious effects induced by chronic stress, we also evaluated plasma corticosterone levels and the hippocampal expression of the corticosteroid mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The results showed that the protein concentration of the NCAM-140 isoform decreased in the hippoampus of stressed rats. This effect was isoform-specific, because NCAM-120 and NCAM-180 levels were not significantly modified. In addition, whereas basal levels of plasma corticosterone tended to be increased, MR and GR concentrations were not significantly altered. Although possible changes in NCAM-120, NCAM-180 and corticosteroid receptors at earlier time points of the stress period cannot be ignored; this study suggests that a down-regulation of NCAM-140 might be implicated in the structural alterations consistently shown to be induced in the hippocampus by chronic stress exposure. As NCAM-140 is involved in cell-cell adhesion and neurite outgrowth, these findings suggest that this molecule might be one of the molecular mechanisms involved in the complex interactions among neurodegeneration-related events.


2013 ◽  
Vol 19 (2) ◽  
pp. 259-264 ◽  
Author(s):  
Paolo Biancheri ◽  
Antonio Di Sabatino ◽  
Laura Rovedatti ◽  
Paolo Giuffrida ◽  
Sandra A. Calarota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document