scholarly journals T-S Fuzzy Control of Uncertain Chaotic Vibration

2012 ◽  
Vol 19 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Abdelkrim Boukabou ◽  
Noura Mansouri

We present in this paper a novel and unified control approach that combines intelligent fuzzy logic methodology with predictive method for controlling chaotic vibration of a class of uncertain chaotic systems. We first introduce prediction into each subsystem of Takagi Sugeno (T-S) fuzzy IF-THEN rules and then present a unified T-S predictive fuzzy model for chaos control. The proposed controller can successfully stabilize the chaos and track the desired targets. The simulation results illustrate its effectiveness.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Qian Ye ◽  
Xuyang Lou

This paper proposes an observer-based fuzzy control scheme for a class of memristive chaotic circuit systems. First, the Takagi-Sugeno fuzzy model is adopted to reconstruct the nonlinear chaotic circuit system. Next, based on the proposed fuzzy model, an observer-based fuzzy controller is developed to estimate the states and stabilize the origin. Third, the results are extended to explore the L∞-gain observer-based fuzzy control for the chaotic system with disturbances. Finally, simulation results are also addressed to show the effectiveness of the proposed control scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Chun-Yen Ho ◽  
Hsien-Keng Chen ◽  
Zheng-Ming Ge

This paper investigates the synchronization ofYinandYangchaotic T-S fuzzy Henon maps via PDC controllers. Based on the Chinese philosophy,Yinis the decreasing, negative, historical, or feminine principle in nature, whileYangis the increasing, positive, contemporary, or masculine principle in nature.YinandYangare two fundamental opposites in Chinese philosophy. The Henon map is an invertible map; so the Henon maps with increasing and decreasing argument can be called theYangandYinHenon maps, respectively. Chaos synchronization ofYinandYangT-S fuzzy Henon maps is achieved by PDC controllers. The design of PDC controllers is based on the linear invertible matrix theory. The T-S fuzzy model ofYinandYangHenon maps and the design of PDC controllers are novel, and the simulation results show that the approach is effective.


Author(s):  
Jun Zhao ◽  
Hugang Han ◽  
◽  

Although the Takagi–Sugeno fuzzy model is effective for representing the dynamics of a plant to be controlled, two main questions arise when using it just as other models: 1) how to deal with the gap, which is referred to as uncertainty in this study, between the model and the concerned plant, and how to estimate the state information when it cannot be obtained directly, especially with the existence of uncertainty; 2) how to design a controller that guarantees a stable control system where only the estimated state is available and an uncertainty exists. While the existing studies cannot effectively observe the state and the resulting control systems can only be managed to be uniformly stable, this study first presents a state observer capable of precisely estimating the state regardless of the existence of uncertainty. Then, based on the state observer, an uncertainty observer is derived, which can track the trajectory of uncertainty whenever it occurs in a real system. Finally, a controller based on both observers is presented, which guarantees the asymptotic stability of the resulting control system.


2019 ◽  
Vol 26 (9-10) ◽  
pp. 643-645
Author(s):  
Xuefeng Zhang

This article shows that sufficient conditions of Theorems 1–3 and the conclusions of Lemmas 1–2 for Takasi–Sugeno fuzzy model–based fractional order systems in the study “Takagi–Sugeno fuzzy control for a wide class of fractional order chaotic systems with uncertain parameters via linear matrix inequality” do not hold as asserted by the authors. The reason analysis is discussed in detail. Counterexamples are given to validate the conclusion.


2006 ◽  
Vol 16 (05) ◽  
pp. 1435-1444 ◽  
Author(s):  
H. K. LAM ◽  
F. H. F. LEUNG

This paper investigates the synchronization of chaotic systems subject to parameter uncertainties. Based on the fuzzy-model-based approach, a switching controller will be proposed to deal with the synchronization problem. The stability conditions will be derived based on the Lyapunov approach. The tracking performance and parameter design of the proposed switching controller will be formulated as a generalized eigenvalue minimization problem which can be solved numerically using some convex programming techniques. Simulation examples will be given to show the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document