scholarly journals Dynamic Analysis of a Pyroprocessing Coupled SFR Fuel Recycling

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Fanxing Gao ◽  
Won Il Ko

Numerous studies have attempted to solve the problems constraining the sustainable utilization of nuclear power, for example, the already accumulated HLWs, the worsening environment due to greenhouse emissions, the questionable reliability of natural uranium resources, and the argument over nuclear safety, which are certainly top issues to be addressed. A well-organized nuclear fuel cycle system is the basis for nuclear power sustainability. Therefore, which type of reactor to be employed and whether or not to adopt a reprocessing technique for spent fuel are two key issues to be addressed. A Sodium Fast Reactor (SFR), a Generation IV reactor, has gained considerable attention worldwide. SFR recycling coupled to pyroprocessing, a so-called Pyro-SFR Recycling, shows promising advantages, and therefore, this paper focuses on exploring a strategy of how to realize it, which can offer informative procedures for a better use of nuclear power. A dynamic model has been developed to quantitatively analyze a country-specific case employing two scenarios, a once-through and Pyro-SFR, for a comprehensive comparison, especially focusing on the uranium utilization, the HLW reduction, and the electricity generation cost.

Author(s):  
Akbar Abbasi

Nuclear power plants to generates electric energy used nuclear fuel such as Uranium Oxide (UOX). A typical VVER−1000 reactor uses about 20–25 tons of spent fuel per year. The fuel transmutation of UOX fuel was evaluated by VISTA computer code. In this estimation the front end and back end components of fuel cycle was calculated. The front end of the cycle parameter are FF requirements, enrichment value requirements, depleted uranium amount, conversion requirements and natural uranium requirements. The back-end component is Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes.


Author(s):  
Chellapandi Perumal ◽  
V. Balasubramaniyan ◽  
P. Puthiyavinayagam ◽  
Raghupathy Sundararajan ◽  
Madhusoodanan Kanakkil ◽  
...  

Indian nuclear power programme is being implemented in three stages taking in to consideration limited uranium resources and vast thorium resources in the country. The first stage consists of investing natural uranium in Pressurized Heavy Water Reactors (PHWR). This stage has the potential of 10 GWe. The second stage involves large scale deployment of Fast Breeder Reactors (FBR) with co-located fuel cycle facilities to utilize the plutonium and depleted uranium extracted from the PHWR spent fuel. This stage has a potential of about 300 GWe. In the third stage, effective utilization of the vast thorium resources is planned. Indira Gandhi Centre for Atomic Research (IGCAR) instituted in 1971 at Kalpakkam, is involved in the mission of developing the technology of FBR. A host of multidisciplinary laboratories are established in the centre around the central facility of the 40 MWt Fast Breeder Test Reactor (FBTR). Presently, the construction of indigenously designed MOX fueled 500 MWe Prototype Fast Breeder Reactor (PFBR) that started in 2003 is in advanced stage and commissioning activities are underway. The design of PFBR incorporates several state-of-art features and is foreseen as an industrial scale techno-economic viability demonstrator for the FBR program. Beyond PFBR, the proposal is to build one twin unit having two reactors, with each of improved design compared to PFBR, to be commissioned by 2025. Subsequently, towards rapid realization of nuclear power, the department is planning a series of metal fueled FBRs starting with a 500 MWe Metal fuel Demonstration Fast Breeder Reactor (MDFR-500) to be followed by industrial scale 1000 MWe metal fueled reactors. The paper discusses in detail the above aspects and highlights the activities carried out towards designing MDFR.


2006 ◽  
Vol 985 ◽  
Author(s):  
James Bresee

AbstractIn the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper.


Author(s):  
Charles McCombie ◽  
Neil Chapman ◽  
Thomas H. Isaacs

There have been repeated proposals for establishing multinational cooperation approaches that could reduce the security concerns of spreading nuclear technologies. Most recently, there have been initiatives by both Russia (GNPI) and the USA (GNEP) – each aimed at promoting nuclear power whilst limiting security concerns. In practice, both initiatives place emphasis on the supply of reactors and enriched fuel but neither has made clear and specific proposals about the back-end part of the arrangement. The primary incentive offered to the user countries is “security of supply” of the front end services. However, there is no current shortage of supply of front end services, so that the incentives are not large. A much greater incentive could be the provision of a spent fuel or waste disposal service. The fuel supplied to Tier 2 countries could be shipped back (with no return of wastes) to the supplier or else to an accepted third party country that is trusted to operate safe and secure disposal facilities. If a comprehensive service that obviates the need for a national deep repository is offered to small countries then there will be a really strong incentive for them to sign up to GNEP or GNPI type deals.


Author(s):  
Jean-Pierre Gros

AREVA has been running since decades nuclear reprocessing and recycling installations in France. Several industrial facilities have been built and used to this aim across the time. Following those decades and with the more and more precise monitoring of the impact of those installations, precise data and lessons-learned have been collected that can be used for the stakeholders of potential new facilities. China has expressed strong interest in building such facilities. As a matter of fact, the issue of accumulation of spent fuel is becoming serious in China and jeopardizes the operation of several nuclear power plants, through the running out of space of storage pools. Tomorrow, with the extremely high pace of nuclear development of China, accumulation of spent fuel will be unbearable. Building reprocessing and recycling installations takes time. A decision has to be taken so as to enable the responsible development of nuclear in China. Without a solution for the back end of its nuclear fuel cycle, the development of nuclear energy will face a wall. This is what the Chinese central government, through the action of its industrial CNNC, has well understood. Several years of negotiations have been held with AREVA. Everybody in the sector seems now convinced. However, now that the negotiation is coming to an end, an effort should be done towards all the stakeholders, sharing actual information from France’s reference facilities on: safety, security, mitigation measures for health protection (of the workers, of the public), mitigation measures for the protection of the environment. Most of this information is public, as France has since years promulgated a law on Nuclear transparency. China is also in need for more transparency, yet lacks means to access this public information, often in French language, so let’s open our books!


Author(s):  
Guang Jun Chen ◽  
Yu Lin Cui ◽  
Guo Guo Zhang ◽  
Hong Jun Yao

With an increased population and an increasing demand for power, nuclear power has attracted an increasing attention and mass nuclear power plant have been built in different countries in the past several decades. At present, about ten thousands ton spent fuels are discharged from nuclear power plant every year and the estimated capacity will approximately add up to 5×105 ton. Therefore, spent fuel reprocessing, by which the co-extraction and separation as well as purification of Uranium and Plutonium could be realized and ensure the recycle of uranium resources and the management of nuclear waste, is a vital step in nuclear fuel cycle including two major strategies, i.e. once-through cycle and closed fuel cycle. It is worth noting that the utilization of MOX fuel made by plutonium mixed with uranium has been successfully achieved in thermal reactor. Fortunately, the middle experiment plant of china spent fuel reprocessing has been being debugged and will be operated completely in future two years. Various reprocessing schemes have been proposed for the extraction of actinides from fission products and other elements presented in spent nuclear fuel. However, after numerous studies of alternate reprocessing methods and intensive searches for better solvents, the PUREX process remains the prime reprocessing method for spent nuclear fuels throughout the world. High burning and strong radioactive spent fuel resulting from the evolution of various reactors drive the development of the advanced PUREX technology, which emphasizes the separation of neptunium and technetium besides the separation of the Uranium and Plutonium from the majority of highly active fission products. In addition, through Partitioning and Transmutation method, some benefits such as segregating the actinides and long life fission products from the high level waste can be obtained. The GANEX process exploited by CEA, which roots in COEX process belonged to advanced PUREX process, considers the separation of the actinides and long life fission products. The study on the pyro-chemical processing such as the method of electro-deposition from molten salts has still not replaced the traditional PUREX process due to various reasons. In conclusion, the future PUREX process will focus on the modified process including predigesting the technical flowsheets and reducing reprocessing costs and using salt-less reagent in order to minimize the waste production.


Author(s):  
Samuel Brinton ◽  
Akira Tokuhiro

According to current forecasts, nuclear power plant construction and nuclear-generated electricity production is projected to increase in the next half-century. This is likely due to the fact that nuclear energy is an ‘environmental alternative’ to fossil fuel plants that emit greenhouse gases (GHG). Nuclear power also has a much higher energy density output than other alternative energy sources such as solar, wind, and biomass energies. There is also growing consensus that processing of low- and high-level waste, LLW and HLW respectively, is a political issue rather than a technical challenge. Prudent implementation of a closed fuel cycle not only curbs build-up of GHGs, but can equally mitigate the need to store nuclear used fuel. The Global Nuclear Energy Partnership (GNEP) is promoting gradual integration of fuel reprocessing, and deployment of fast reactors (FRs) into the global fleet for long-term uranium resource usage. The use of mixed oxide (MOX) fuel burning Light Water Reactors (LWR) has also been suggested by fuel cycle researchers. This study concentrated on modeling the construction and decommissioning rates of six major facilities comprising the nuclear fuel cycle, as follows: (1) current LWRs decommissioned at 60-years service life, (2) new LWRs burning MOX fuel, (3) new (Gen’ III+) LWRs to replace units and/or be added to the fleet, (4) new FRs to be added to the fleet, (5) new reprocessing and MOX fuel fabrication facilities and (6) new LWR fuel fabrication facilities. Our initial work [1] focused on modeling the construction and decommissioning rates of reactors to be deployed. This is being followed with a ‘mass flow model’, starting from uranium ore and following it to spent forms. The visual dynamic modeling program Vensim was used to create a system of equations and variables to track the mass flows from enrichment, fabrication, burn-up, and the back-end of the fuel cycle. Sensible construction and deployment rates were benchmarked against recent reports and then plausible scenarios considered parametrically. The timeline starts in 2007 and extends in a preliminary model to 2057; a further mass flow model scenario continues until 2107. The scenarios considered provide estimates of the uranium ore requirements, quantities of LLW and HLW production, and waste storage volume needs. The results of this study suggest the number of reprocessing facilities necessary to stabilize and/or reduce recently reported levels of spent fuel inventory. Preliminary results indicate that the entire national spent fuel inventory produced over the next ∼50 years can be reprocessed by a reprocessing plant construction rate of less than 0.07 plants/year (small capacity) or less than 0.05 plants /year (large capacity). Any larger construction rate could reduce the spent fuel inventory destined for storage. These and additional results will be presented.


2020 ◽  
Vol 6 (2) ◽  
pp. 93-98
Author(s):  
Nikita V. Kovalev ◽  
Boris Ya. Zilberman ◽  
Nikolay D. Goletsky ◽  
Andrey B. Sinyukhin

A review of simulated nuclear fuel cycles with mixed uranium-plutonium fuel (REMIX) was carried out. The concept of REMIX fuel is one of the options for closing the nuclear fuel cycle (NFC), which makes it possible to recycle uranium and plutonium in VVER-1000/1200 thermal reactors at a 100% core loading. The authors propose a new approach to the recycling of spent nuclear fuel (SNF) in thermal reactors. The approach implies a simplified fabrication of mixed fuel when plutonium is used in high concentration together with enriched natural uranium, while reprocessed uranium is supposed to be enriched and used separately. The share of standard enriched natural uranium fuel in this nuclear fuel cycle is more than 50%, the share of mixed natU+Pu fuel is 25%, the rest is fuel obtained from enriched reprocessed uranium. It is emphasized that the new approach has the maximum economic prospect and makes it possible to organize the fabrication of this fuel and nuclear material cross-cycling at the facilities available in the Russian Federation in the short term. This NFC option eliminates the accumulation of SNF in the form of spent fuel assemblies (SFA). SNF is always reprocessed with the aim of further using the primary reprocessed uranium and plutonium. Non-recyclable in thermal reactors, burnt, reprocessed uranium, the energy potential of which is comparable to natural uranium, as well as secondary plutonium intended for further use in fast reactors, are sent as reprocessing by-products to the storage area.


2020 ◽  
Vol 6 ◽  
pp. 33
Author(s):  
Hamid Aït Abderrahim ◽  
Peter Baeten ◽  
Alain Sneyers ◽  
Marc Schyns ◽  
Paul Schuurmans ◽  
...  

Today, nuclear power produces 11% of the world's electricity. Nuclear power plants produce virtually no greenhouse gases or air pollutants during their operation. Emissions over their entire life cycle are very low. Nuclear energy's potential is essential to achieving a deeply decarbonized energy future in many regions of the world as of today and for decades to come, the main value of nuclear energy lies in its potential contribution to decarbonizing the power sector. Nuclear energy's future role, however, is highly uncertain for several reasons: chiefly, escalating costs and, the persistence of historical challenges such as spent fuel and radioactive waste management. Advanced nuclear fuel recycling technologies can enable full use of natural energy resources while minimizing proliferation concerns as well as the volume and longevity of nuclear waste. Partitioning and Transmutation (P&T) has been pointed out in numerous studies as the strategy that can relax constraints on geological disposal, e.g. by reducing the waste radiotoxicity and the footprint of the underground facility. Therefore, a special effort has been made to investigate the potential role of P&T and the related options for waste management all along the fuel cycle. Transmutation based on critical or sub-critical fast spectrum transmuters should be evaluated in order to assess its technical and economic feasibility and capacity, which could ease deep geological disposal implementation.


Estimates are given of the total quantities of radioactivity, and of the contribution from different isotopes to this total, arising in the wastes from civil nuclear power generation; the figures are normalized to 1 GW (e) y of power production. The intensity of the heat and y-radiation emitted by the spent fuel has been calculated, and their decrease as the radioactivity decays. Reprocessing the spent fuel results in 95% or more of the fission products and higher actinides being concentrated in a small volume of high-level, heat-emitting waste. The total decay curve of unreprocessed spent fuel or of the separated high-level waste is dominated by the decay of some fission products for a few hundred years and then by the decay of some actinide isotopes for some tens of thousands of years. The residual activity is compared with that of the original uranium ore. Some of the long-lived activity will appear in other waste streams, particularly on the fuel cladding, and the volumes and activities of these wastes arising in this country are recorded. The long-lived activity arising from reactor decommissioning will be small compared with the annual arisings from the fuel cycle.


Sign in / Sign up

Export Citation Format

Share Document