scholarly journals Stability in Switched Cohen-Grossberg Neural Networks with Mixed Time Delays and Non-Lipschitz Activation Functions

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Huaiqin Wu ◽  
Guohua Xu ◽  
Chongyang Wu ◽  
Ning Li ◽  
Kewang Wang ◽  
...  

The stability for the switched Cohen-Grossberg neural networks with mixed time delays andα-inverse Hölder activation functions is investigated under the switching rule with the average dwell time property. By applying multiple Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI) technique, a delay-dependent sufficient criterion is achieved to ensure such switched neural networks to be globally exponentially stable in terms of LMIs, and the exponential decay estimation is explicitly developed for the states too. Two illustrative examples are given to demonstrate the validity of the theoretical results.


2010 ◽  
Vol 88 (12) ◽  
pp. 885-898 ◽  
Author(s):  
R. Raja ◽  
R. Sakthivel ◽  
S. Marshal Anthoni

This paper investigates the stability issues for a class of discrete-time stochastic neural networks with mixed time delays and impulsive effects. By constructing a new Lyapunov–Krasovskii functional and combining with the linear matrix inequality (LMI) approach, a novel set of sufficient conditions are derived to ensure the global asymptotic stability of the equilibrium point for the addressed discrete-time neural networks. Then the result is extended to address the problem of robust stability of uncertain discrete-time stochastic neural networks with impulsive effects. One important feature in this paper is that the stability of the equilibrium point is proved under mild conditions on the activation functions, and it is not required to be differentiable or strictly monotonic. In addition, two numerical examples are provided to show the effectiveness of the proposed method, while being less conservative.



Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3435-3449
Author(s):  
Bo Du

In this paper, the state estimation problem is dealt with for a class of neutral-type neural networks with mixed time delays. We aim at designing a state estimator to estimate the neuron states, through available output measurements, such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By using the Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the state estimators. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.



2011 ◽  
pp. 1208-1232
Author(s):  
Hamid Reza Karimi

An exponential H8 synchronization method is addressed for a class of uncertain master and slave neural networks with mixed time-delays, where the mixed delays comprise different neutral, discrete and distributed time-delays. An appropriate discretized Lyapunov-Krasovskii functional and some free weighting matrices are utilized to establish some delay-dependent sufficient conditions for designing a delayed state-feedback control as a synchronization law in terms of linear matrix inequalities under less restrictive conditions. The controller guarantees the exponential H8 synchronization of the two coupled master and slave neural networks regardless of their initial states. Numerical simulations are provided to demonstrate the effectiveness of the established synchronization laws.



2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
Guoquan Liu ◽  
Shumin Zhou ◽  
He Huang

The stability analysis of global asymptotic stability of neural networks of neutral type with both discrete interval delays and general activation functions is discussed. New delay-dependent conditions are obtained by using more general Lyapunov-Krasovskii functionals. Meanwhile, these conditions are expressed in terms of a linear matrix inequality (LMI) and can be verified using the MATLAB LMI toolbox. Numerical examples are used to illustrate the effectiveness of the proposed approach.



Author(s):  
Hamid Reza Karimi

An exponential H8 synchronization method is addressed for a class of uncertain master and slave neural networks with mixed time-delays, where the mixed delays comprise different neutral, discrete and distributed time-delays. An appropriate discretized Lyapunov-Krasovskii functional and some free weighting matrices are utilized to establish some delay-dependent sufficient conditions for designing a delayed state-feedback control as a synchronization law in terms of linear matrix inequalities under less restrictive conditions. The controller guarantees the exponential H8 synchronization of the two coupled master and slave neural networks regardless of their initial states. Numerical simulations are provided to demonstrate the effectiveness of the established synchronization laws.



Author(s):  
Zidong Wang ◽  
Yurong Liu ◽  
Xiaohui Liu

This chapter deals with the analysis problem of the global exponential stability for a general class of stochastic artificial higher order neural networks with multiple mixed time delays and Markovian jumping parameters. The mixed time delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. The main purpose of this chapter is to establish easily verifiable conditions under which the delayed high-order stochastic jumping neural network is exponentially stable in the mean square in the presence of both the mixed time delays and Markovian switching. By employing a new Lyapunov-Krasovskii functional and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the criteria ensuring the exponential stability. Furthermore, the criteria are dependent on both the discrete time-delay and distributed time-delay, hence less conservative. The proposed criteria can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A simple example is provided to demonstrate the effectiveness and applicability of the proposed testing criteria.



2009 ◽  
Vol 51 (1) ◽  
pp. 123-140
Author(s):  
MINGHAO LI ◽  
WUNENG ZHOU ◽  
ZIWEI NI ◽  
MINGJUN WANG

AbstractThis paper deals with the problem of discrete and distributed time-delay exponential stability for deterministic and uncertain stochastic high-order neural networks. The concept of a parameter weak coupling linear matrix inequality set (PWCLMIS) is developed. New results are derived in terms of PWCLMIS. Large mixed time delays can be obtained by using this approach. Furthermore, these results are more general than some previous existence results. Two numerical examples are given to show the merit of the approach.



2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Qiang Xi ◽  
Jianguo Si

We study a class of impulsive neural networks with mixed time delays and generalized activation functions. The mixed delays include time-varying transmission delay, bounded time-varying distributed delay, and discrete constant delay in the leakage term. By using the contraction mapping theorem, we obtain a sufficient condition to guarantee the global existence and uniqueness of the solution for the addressed neural networks. In addition, a delay-independent sufficient condition for existence of an equilibrium point and some delay-dependent sufficient conditions for stability are derived, respectively, by using topological degree theory and Lyapunov-Krasovskii functional method. The presented results require neither the boundedness, monotonicity, and differentiability of the activation functions nor the differentiability (even differential boundedness) of time-varying delays. Moreover, the proposed stability criteria are given in terms of linear matrix inequalities (LMI), which can be conveniently checked by the MATLAB toolbox. Finally, an example is given to show the effectiveness and less conservativeness of the obtained results.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.



Sign in / Sign up

Export Citation Format

Share Document