scholarly journals A New Four-Scroll Chaotic Attractor Consisted of Two-Scroll Transient Chaotic and Two-Scroll Ultimate Chaotic

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yuhua Xu ◽  
Bing Li ◽  
Yuling Wang ◽  
Wuneng Zhou ◽  
Jian-an Fang

A new four-scroll chaotic attractor is found by feedback controlling method in this paper. The novel chaotic system can generate four scrolls two of which are transient chaotic and the other two of which are ultimate chaotic. Of particular interest is that this novel chaotic system can generate one-scroll, two 2-scroll and four-scroll chaotic attractor with variation of a single parameter. We analyze the new system by means of phase portraits, Lyapunov exponents, fractional dimension, bifurcation diagram, and Poincaré map, respectively. The analysis results show clearly that this is a new chaotic system which deserves further detailed investigation.

2020 ◽  
Vol 31 (4) ◽  
pp. 62
Author(s):  
Sadiq A. Mehdi ◽  
Shatha Jassim Muhamed

The chaotic system has been widely studied. A new six-dimension hyper chaotic system is introduced in this paper. We used a new chaotic system based on a six-dimension for the purpose of increasing chaos in the system, where the new system has eleven positive parameters, complicated chaotic dynamics behaviors and gives an analysis of the new systems. The basic characteristics and dynamic behavior of this system are investigated with a presence of chaotic attractor, Dissipativity, symmetry, equilibrium points, Lyapunov Exponents, Kaplan-Yorke dimension, waveform analysis and sensitivity toward initial conditions. The results of the analysis exhibit that the new system contains three unstable equilibrium points and the six Lyapunov exponents. Maxim non-negative Lyapunov Exponent (MLE) is obtained as 4.72625, and Kaplan-Yorke are obtained as 3.92566, and the new system characteristics with, unstable, high complexity, and unpredictability, the new system dynamics is simulated utilizing MATHEMATICA program. The phase portraits and the qualitative properties of the new hyper chaotic system have been described at the detail.


2018 ◽  
Vol 7 (3) ◽  
pp. 1931 ◽  
Author(s):  
Sivaperumal Sampath ◽  
Sundarapandian Vaidyanathan ◽  
Aceng Sambas ◽  
Mohamad Afendee ◽  
Mustafa Mamat ◽  
...  

This paper reports the finding a new four-scroll chaotic system with four nonlinearities. The proposed system is a new addition to existing multi-scroll chaotic systems in the literature. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system via MATLAB are unveiled. As the new four-scroll chaotic system is shown to have three unstable equilibrium points, it has a self-excited chaotic attractor. An electronic circuit simulation of the new four-scroll chaotic system is shown using MultiSIM to check the feasibility of the four-scroll chaotic model.


2009 ◽  
Vol 19 (11) ◽  
pp. 3841-3853 ◽  
Author(s):  
ZENGHUI WANG ◽  
GUOYUAN QI ◽  
YANXIA SUN ◽  
MICHAËL ANTONIE VAN WYK ◽  
BAREND JACOBUS VAN WYK

In this paper, several three-dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have similar features. A simpler and generalized 3-D continuous autonomous system is proposed based on these features which can be extended to existing 3-D four-wing chaotic systems by adding some linear and/or quadratic terms. The new system can generate a four-wing chaotic attractor with simple topological structures. Some basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincaré maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.


2017 ◽  
Vol 27 (10) ◽  
pp. 1750152 ◽  
Author(s):  
Zhen Wang ◽  
Zhe Xu ◽  
Ezzedine Mliki ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Designing chaotic systems with specific features is a very interesting topic in nonlinear dynamics. However most of the efforts in this area are about features in the structure of the equations, while there is less attention to features in the topology of strange attractors. In this paper, we introduce a new chaotic system with unique property. It has been designed in such a way that a specific property has been injected to it. This new system is analyzed carefully and its real circuit implementation is presented.


2021 ◽  
pp. 2150458
Author(s):  
Xiaoxia Li ◽  
Chi Zheng ◽  
Xue Wang ◽  
Yingzi Cao ◽  
Guizhi Xu

In this paper, a new four-dimensional (4D) chaotic system with two cubic nonlinear terms is proposed. The most striking feature is that the new system can exhibit completely symmetric coexisting bifurcation behaviors and four symmetric coexisting attractors with the same Lyapunov exponents in all parameter ranges of the system when taking different initial states. Interestingly, these symmetric coexisting attractors can be considered as unusual symmetrical rotational coexisting attractors, which is a very fascinating phenomenon. Furthermore, by using a memristor to replace the coupling resistor of the new system, an interesting 4D memristive hyperchaotic system with one unstable origin is constructed. Of particular surprise is that it can exhibit four groups of extreme multistability phenomenon of infinitely many coexisting attractors of symmetric distribution about the origin. By using phase portraits, Lyapunov exponent spectra, and coexisting bifurcation diagrams, the dynamics of the two systems are fully analyzed and investigated. Finally, the electronic circuit model of the new system is designed for verifying the feasibility of the new chaotic system.


2016 ◽  
Vol 26 (1) ◽  
pp. 19-47 ◽  
Author(s):  
Sundarapandian Vaidyanathan

This paper announces an eight-term novel 3-D jerk chaotic system with three quadratic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has two equilibrium points, which are saddle-foci and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1= 0.20572,L2= 0 and L3= −1.20824. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the novel jerk chaotic system is derived as DKY= 2.17026. Next, an adaptive controller is designed via backstepping control method to globally stabilize the novel jerk chaotic system with unknown parameters. Moreover, an adaptive controller is also designed via backstepping control method to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations have been depicted to illustrate the phase portraits of the novel jerk chaotic system and also the adaptive backstepping control results.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950181
Author(s):  
Fahimeh Nazarimehr ◽  
Viet-Thanh Pham ◽  
Karthikeyan Rajagopal ◽  
Fawaz E. Alsaadi ◽  
Tasawar Hayat ◽  
...  

This paper proposes a new chaotic system with a specific attractor which is bounded in a sphere. The system is offered in the spherical coordinate. Dynamical properties of the system are investigated in this paper. The system shows multistability, and all of its attractors are inside or on the surface of the specific sphere. Bifurcation diagram of the system displays an inverse period-doubling route to chaos. Lyapunov exponents of the system are studied to show its chaotic attractors and predict its bifurcation points.


2017 ◽  
Vol 27 (3) ◽  
pp. 409-439 ◽  
Author(s):  
Sundarapandian Vaidyanathan

AbstractThis paper presents a new seven-term 3-D jerk chaotic system with two cubic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1= 0:2974, L2= 0 and L3= −3:8974. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the new jerk chaotic system is found as DKY= 2:0763. Next, an adaptive backstepping controller is designed to globally stabilize the new jerk chaotic system with unknown parameters. Moreover, an adaptive backstepping controller is also designed to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations are shown to illustrate all the main results derived in this work.


Author(s):  
Aceng Sambas ◽  
Sundarapandian Vaidyanathan ◽  
Mustafa Mamat ◽  
Muhammad Afendee Mohamed ◽  
Mada Sanjaya WS

This paper reports the finding a new chaotic system with a pear-shaped equilibrium curve and makes a valuable addition to existing chaotic systems with infinite equilibrium points in the literature. The new chaotic system has a total of five nonlinearities. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system are unveiled. An electronic circuit simulation of the new chaotic system with pear-shaped equilibrium curve is shown using Multisim to check the model feasibility.


2009 ◽  
Vol 20 (02) ◽  
pp. 323-335 ◽  
Author(s):  
GUOSI HU ◽  
BO YU

Recently, there are many methods for constructing multi-wing/multi-scroll or hyperchaotic attractors; however, it has been noticed that the attractors with both multi-wing topological structure and hyperchaotic characteristic rarely exist. A new chaotic system, obtained by making the change on coordinate to the Hu chaotic system, can generate very complex attractors with four-wing topological structure and three positive Lyapunov exponents over a wide range of parameters. The influence of parameters varying to system dynamics is analyzed, computer simulations and bifurcation analysis is also verified in this paper.


Sign in / Sign up

Export Citation Format

Share Document