scholarly journals Printed Internal Pentaband WWAN Antenna Using Chip-Inductor-Loaded Shorting Strip for Mobile Phone Application

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yong-Ling Ban ◽  
Shun Yang ◽  
Joshua Le-Wei Li ◽  
Rui Li

A compact size on-board printed antenna using capacitive coupled-fed excitation to generate multiple resonant modes for penta-band WWAN operation (GSM850/900/GSM1800/1900/UMTS2100) is presented in this paper. The proposed antenna occupies only a small footprint of 15 × 25 mm2on one corner of the circuit board and a protruded ground of 10 × 15 mm2is displaced with close proximity to the antenna portion. The proposed antenna has a very simple structure which is composed of two separate strips: a loop strip with an inserted chip inductor and an L-shaped feeding strip. The loop strip is shorted to the ground and generates a resonant mode at 890 MHz to cover the GSM850/900 band (824–960 MHz) while the feeding strip contributes to the GSM1800/1900/UMTS210 band (1710–2170 MHz) operation. With such a small size, the proposed antenna can achieve compact integration on the circuit board of the mobile phone, thus the proposed scheme is quite suitable for the slim mobile phone application. Good agreements between simulations and measurements are obtained. Details of proposed antenna are presented and some key parameters are studied.

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Yuan Xu ◽  
Hao-Miao Zhou

A multiband printed loop mobile phone antenna for LTE/WWAN/GNSS application is presented. It covers seven communication bands (VSWR < 3) and GNSS band (VSWR < 1.5). The so-called GNSS (global navigation satellite system) band includes COMPASS, GALILEO, GPS, and GLONASS. From the analysis of the structure, the coupled-fed antenna mainly consists of three parts: the feeding strip, shorted strip, and U-shaped parasitic coupling strip. The proposed antenna works in three resonant modes, respectively, at 860 MHz (0.25λ), 1620 MHz (0.5λ), and 2620 MHz (1λ). A solution is provided, by which the navigation antenna can be integrated into the communication main antenna to save space. The antenna not only can work in GSM850/900/1800/1900/UMTS2100/LTE2300/2500 bands but also covers the world’s four major navigation systems. Moreover, the proposed antenna can be easily printed on the circuit board without loading any lumped element and only occupies a small volume of 18 × 32 × 3 mm3, which is suitable for smartphone application. In addition, the redundant design of multinavigation system is quite favorable for the elimination of errors or shadow area caused by single navigation system, especially for outdoor investigation, national security, and so on.


2020 ◽  
Vol 12 (5) ◽  
pp. 352-355
Author(s):  
Mohammad Sajjad Bayati ◽  
Tahsin Khorand

AbstractIn this paper, a novel directional filter (DF) is proposed and implemented using substrate integrated waveguide (SIW) technology which exhibits the advantages of compact size and simple structure. The proposed DF is realized by two half mode substrate integrated waveguides (HMSIWs) and two substrate integrated circular cavity (SICC) resonators operating in the TM110 degenerate modes in which an aperture is utilized to realize the coupling between HMSIWs and SICCs. Two slotlines with appropriate dimensions, etched on the top and bottom planes, are utilized in order to control coupling strength between two cascaded SICC resonators. The proposed two-circular cavity SIW DF at 12.3 GHz is designed and fabricated with a normal printed circuit board process. Measured and simulated results indicate that the DF has a 3.25% bandwidth, and the return loss as well as isolation are better than 10.5 and 15 dB, respectively.


2013 ◽  
Vol 811 ◽  
pp. 331-334
Author(s):  
Tsang Yen Hsieh ◽  
Jyh Liang Wang ◽  
Chuan Chou Hwang ◽  
Wei Chuan Chen

A small-size printed antenna is proposed for the application of mobile phones. The antennacomprisesan outer strip, an inner strip, and a common section.It not only occupies a compact area of 25 × 20 mm² butalsosupports two wide bandswithinthe resonantmodes. Prototypes of the antenna had been constructed and experimentally verified. The measured results of the antenna show the bandwidth cover the existing service bands of GSM/DCS/PCS/UMTS within 6 dB return loss specification, and also have good radiation patterns and antenna gains.This antenna is well suitable to be used for mobile phone application.


2010 ◽  
Vol 130 (3) ◽  
pp. 394-400
Author(s):  
Tsuyoshi Nakayama ◽  
Yuka Miyaji ◽  
Seishi Kato ◽  
Nobuhisa Sakurada ◽  
Noriyuki Ueda ◽  
...  

Author(s):  
O. Crépel ◽  
Y. Bouttement ◽  
P. Descamps ◽  
C. Goupil ◽  
P. Perdu ◽  
...  

Abstract We developed a system and a method to characterize the magnetic field induced by circuit board and electronic component, especially integrated inductor, with magnetic sensors. The different magnetic sensors are presented and several applications using this method are discussed. Particularly, in several semiconductor applications (e.g. Mobile phone), active dies are integrated with passive components. To minimize magnetic disturbance, arbitrary margin distances are used. We present a system to characterize precisely the magnetic emission to insure that the margin is sufficient and to reduce the size of the printed circuit board.


Author(s):  
Ruchi ◽  
Amalendu Patnaik ◽  
M. V. Kartikeyan

Abstract Designing miniaturized multiband antennas to cover both the 5G new radio frequencies (FR1 and FR2) simultaneously is a challenge for wireless communication researchers. This paper presents two antenna designs : a dual-band printed antenna of size 18 × 16 × 0.285 mm3 operating at FR1–5.8 GHz and FR2–28 GHz and a triple-band printed antenna with dimensions 30 × 25 × 0.543 mm3 operating at FR1–3.5 GHz and 5.8 GHz (sub-6 GHz microwave frequency bands) and FR2–28 GHz (mm-wave frequency band). The final projected triple-band antenna has a compact size with an impedance bandwidth of 12.71%, 11.32%, and 18.3% at 3.5 GHz, 5.8 GHz, and 28 GHz, respectively with the corresponding gain of 1.86 dB, 2.55 dB, and 4.41 dB. The measured radiation characteristics of the fabricated prototypes show that the proposed designs are suitable for trendy 5G-RFID and mobile Internet of things (IoT) applications.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 383-392
Author(s):  
Rajveer S. Yaduvanshi ◽  
Richa Gupta ◽  
Saurabh Katiyar

AbstractSmartdielectric resonator antenna (DRA) having beam control mechanism is anew area to be explored by antenna researchers. Proposed new geometry DRA has low loss, design flexibility, high efficiency, compact size and desired radiated beam control. Developing beam control in new geometry DRAs is investigated for the first time in this letter. Unique technique for beam control and beam width control is proposed using pit top and mount top DRA. Gain is controlled from 5.0 to 9.98 dBi and beam is controlled from ±30° to ±70° in broadside radiation pattern. U shape pit DRA has maximum directive gain of 9.98 dBi and efficiency 98% at 5.8 GHz frequency. Measured and simulated results of radiation pattern and reflection coefficient are found to be in close proximity. Hardware of U shape pit top DRA, mount top DRA, left side arc top DRA, right side arc shape top DRA is developed and investigated. Mobile and cellular communication network need wide coverage, hence large beam width is required. Narrowing of beam width at higher order mode is also achieved.


Sign in / Sign up

Export Citation Format

Share Document