scholarly journals Bromodomain-Containing Protein 4: A Dynamic Regulator of Breast Cancer Metastasis through Modulation of the Extracellular Matrix

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jude Alsarraj ◽  
Kent W. Hunter

Metastasis is an extremely complex process that accounts for most cancer-related deaths. Malignant primary tumors can be removed surgically, but the cells that migrate, invade, and proliferate at distant organs are often the cells that prove most difficult to target therapeutically. There is growing evidence that host factors outside of the primary tumors are of major importance in the development of metastasis. Recently, we have shown that the bromodomain-containing protein 4 or bromodomain 4 (Brd4) functions as an inherited susceptibility gene for breast cancer progression and metastasis. In this paper, we will discuss that host genetic background on which a tumor arises can significantly alter the biology of the subsequent metastatic disease, and we will focus on the role ofBrd4in regulating metastasis susceptibility.

2021 ◽  
Vol 22 (13) ◽  
pp. 6906
Author(s):  
Milene N.O. Moritz ◽  
Alyssa R. Merkel ◽  
Ean G. Feldman ◽  
Heloisa S. Selistre-de-Araujo ◽  
Julie A. Rhoades (Sterling)

Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2β1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2β1 in the context of bone metastasis. In this study, we aimed to understand the role of α2β1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2β1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2β1 expression and bone-metastatic potential. Inhibiting α2β1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.


Author(s):  
Justin D. Middleton ◽  
Daniel G. Stover ◽  
Tsonwin Hai

An emerging picture in cancer biology is that, paradoxically, chemotherapy can actively induce changes that favor cancer progression. These pro-cancer changes can be either inside (intrinsic) or outside (extrinsic) the cancer cells. In this review, we will discuss the extrinsic pro-cancer effect of chemotherapy; that is, the effect of chemotherapy on the non-cancer host cells to promote cancer progression. We will focus on metastasis, and will first discuss recent data from mouse models of breast cancer. Intriguingly, despite reducing the size of primary tumors, chemotherapy changes the tumor microenvironment, resulting in an increased escape of cancer cells into the blood stream. Furthermore, chemotherapry changes the tissue microenvironment at the distant sites, making it more hospitable to cancer cells upon their arrival. We will then discuss the idea and evidence that these devastating pro-metastatic effects of chemotherapy can be explained in the context of stress response. At the end, we will discuss the potential relevance of these mouse data to human breast cancer and their implication on chemotherapy in the clinic.


2018 ◽  
Vol 19 (11) ◽  
pp. 3333 ◽  
Author(s):  
Justin Middleton ◽  
Daniel Stover ◽  
Tsonwin Hai

An emerging picture in cancer biology is that, paradoxically, chemotherapy can actively induce changes that favor cancer progression. These pro-cancer changes can be either inside (intrinsic) or outside (extrinsic) the cancer cells. In this review, we will discuss the extrinsic pro-cancer effect of chemotherapy; that is, the effect of chemotherapy on the non-cancer host cells to promote cancer progression. We will focus on metastasis, and will first discuss recent data from mouse models of breast cancer. Despite reducing the size of primary tumors, chemotherapy changes the tumor microenvironment, resulting in an increased escape of cancer cells into the blood stream. Furthermore, chemotherapry changes the tissue microenvironment at the distant sites, making it more hospitable to cancer cells upon their arrival. We will then discuss the idea and evidence that these devastating pro-metastatic effects of chemotherapy can be explained in the context of adaptive-response. At the end, we will discuss the potential relevance of these mouse data to human breast cancer and their implication on chemotherapy in the clinic.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1005
Author(s):  
Lauren E. Hillers-Ziemer ◽  
Abbey E. Williams ◽  
Amanda Janquart ◽  
Caitlin Grogan ◽  
Victoria Thompson ◽  
...  

Obesity is correlated with increased incidence of breast cancer metastasis; however, the mechanisms underlying how obesity promotes metastasis are unclear. In a diet-induced obese mouse model, obesity enhanced lung metastasis in both the presence and absence of primary mammary tumors and increased recruitment of myeloid lineage cells into the lungs. In the absence of tumors, obese mice demonstrated increased numbers of myeloid lineage cells and elevated collagen fibers within the lung stroma, reminiscent of premetastatic niches formed by primary tumors. Lung stromal cells isolated from obese tumor-naïve mice showed increased proliferation, contractility, and expression of extracellular matrix, inflammatory markers and transforming growth factor beta-1 (TGFβ1). Conditioned media from lung stromal cells from obese mice promoted myeloid lineage cell migration in vitro in response to colony-stimulating factor 2 (CSF2) expression and enhanced invasion of tumor cells. Together, these results suggest that prior to tumor formation, obesity alters the lung microenvironment, creating niches conducive to metastatic growth.


Sign in / Sign up

Export Citation Format

Share Document