scholarly journals Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. Mashayekhi ◽  
M. Razzaghi ◽  
O. Tripak

A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

2018 ◽  
Vol 9 (1-2) ◽  
pp. 16-27 ◽  
Author(s):  
Mohamed Abdel- Latif Ramadan ◽  
Mohamed R. Ali

In this paper, an efficient numerical method to solve a system of linear fuzzy Fredholm integral equations of the second kind based on Bernoulli wavelet method (BWM) is proposed. Bernoulli wavelets have been generated by dilation and translation of Bernoulli polynomials. The aim of this paper is to apply Bernoulli wavelet method to obtain approximate solutions of a system of linear Fredholm fuzzy integral equations. First we introduce properties of Bernoulli wavelets and Bernoulli polynomials, then we used it to transform the integral equations to the system of algebraic equations. The error estimates of the proposed method is given and compared by solving some numerical examples.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Jianhua Hou ◽  
Beibo Qin ◽  
Changqing Yang

A numerical method to solve nonlinear Fredholm integral equations of second kind is presented in this work. The method is based upon hybrid function approximate. The properties of hybrid of block-pulse functions and Taylor series are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of algebraic equations. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.


2018 ◽  
Vol 20 ◽  
pp. 02001
Author(s):  
M. Razzaghi

In this paper, a new numerical method for solving the fractional differential equations with boundary value problems is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann-Liouville fractional integral operator for hybrid functions is given. This operator is then utilized to reduce the solution of the boundary value problems for fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
H. Bin Jebreen

A novel and efficient numerical method is developed based on interpolating scaling functions to solve 2D Fredholm integral equations (FIE). Using the operational matrix of integral for interpolating scaling functions, FIE reduces to a set of algebraic equations that one can obtain an approximate solution by solving this system. The convergence analysis is investigated, and some numerical experiments confirm the accuracy and validity of the method. To show the ability of the proposed method, we compare it with others.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Changqing Yang ◽  
Jianhua Hou

A numerical method to solve Lane-Emden equations as singular initial value problems is presented in this work. This method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method transforms the differential equation into a system of algebraic equations. It also has application in a wide area of differential equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.


2021 ◽  
Vol 17 (1) ◽  
pp. 33
Author(s):  
Ayyubi Ahmad

A computational method based on modification of block pulse functions is proposed for solving numerically the linear Volterra-Fredholm integral equations. We obtain integration operational matrix of modification of block pulse functions on interval [0,T). A modification of block pulse functions and their integration operational matrix can be reduced to a linear upper triangular system. Then, the problem under study is transformed to a system of linear algebraic equations which can be used to obtain an approximate solution of  linear Volterra-Fredholm integral equations. Furthermore, the rate of convergence is  O(h) and error analysis of the proposed method are investigated. The results show that the approximate solutions have a good of efficiency and accuracy.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 200
Author(s):  
Ji-Huan He ◽  
Mahmoud H. Taha ◽  
Mohamed A. Ramadan ◽  
Galal M. Moatimid

The present paper employs a numerical method based on the improved block–pulse basis functions (IBPFs). This was mainly performed to resolve the Volterra–Fredholm integral equations of the second kind. Those equations are often simplified into a linear system of algebraic equations through the use of IBPFs in addition to the operational matrix of integration. Typically, the classical alterations have enhanced the time taken by the computer program to solve the system of algebraic equations. The current modification works perfectly and has improved the efficiency over the regular block–pulse basis functions (BPF). Additionally, the paper handles the uniqueness plus the convergence theorems of the solution. Numerical examples have been presented to illustrate the efficiency as well as the accuracy of the method. Furthermore, tables and graphs are used to show and confirm how the method is highly efficient.


Author(s):  
S.C. Shiralashetti ◽  
R.A. Mundewadi

In this paper, we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Haar wavelet collocation method. Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations, solving these equations using MATLAB to compute the Haar coefficients. The numerical results are compared with exact and existing method through error analysis, which shows the efficiency of the technique.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammad Heydari ◽  
Ghasem Brid Loghmani ◽  
Seyed Mohammad. Hosseini ◽  
Seyed Mehdi Karbassi

A numerical method for finding the solution of Duffing-harmonic oscillator is proposed. The approach is based on hybrid functions approximation. The properties of hybrid functions that consist of block-pulse and Chebyshev cardinal functions are discussed. The associated operational matrices of integration and product are then utilized to reduce the solution of a strongly nonlinear oscillator to the solution of a system of algebraic equations. The method is easy to implement and computationally very attractive. The results are compared with the exact solution and results from several recently published methods, and the comparisons showed proper accuracy of this method.


2005 ◽  
Vol 11 (12) ◽  
pp. 1455-1468 ◽  
Author(s):  
H. R. Marzban ◽  
M. Razzaghi

In this paper we present a method for finding the solution of time-delay systems using a hybrid function. We present the properties of the hybrid functions, which consist of block-pulse functions plus Taylor series. The method is based upon expanding various time functions in the system as their truncated hybrid functions. Operational matrices of integration and delay are presented and are utilized to reduce the solution of time-delay systems to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


Sign in / Sign up

Export Citation Format

Share Document