scholarly journals Some Results on an Infinite Family of Nonexpansive Mappings and an Inverse-Strongly Monotone Mapping in Hilbert Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Peng Cheng ◽  
Anshen Zhang

We study the problem of approximating a common element in the common fixed point set of an infinite family of nonexpansive mappings and in the solution set of a variational inequality involving an inverse-strongly monotone mapping based on a viscosity approximation iterative method. Strong convergence theorems of common elements are established in the framework of Hilbert spaces.


2011 ◽  
Vol 61 (2) ◽  
Author(s):  
Poom Kumam ◽  
Somyot Plubtieng

AbstractWe use viscosity approximation methods to obtain strong convergence to common fixed points of monotone mappings and a countable family of nonexpansive mappings. Let C be a nonempty closed convex subset of a Hilbert space H and P C is a metric projection. We consider the iteration process {x n} of C defined by x 1 = x ∈ C is arbitrary and $$ x_{n + 1} = \alpha _n f(x_n ) + (1 - \alpha _n )S_n P_C (x_n + \lambda _n Ax_n ) $$ where f is a contraction on C, {S n} is a sequence of nonexpansive self-mappings of a closed convex subset C of H, and A is an inverse-strongly-monotone mapping of C into H. It is shown that {x n} converges strongly to a common element of the set of common fixed points of a countable family of nonexpansive mappings and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping which solves some variational inequality. Finally, the ideas of our results are applied to find a common element of the set of equilibrium problems and the set of solutions of the variational inequality problem, a zero of a maximal monotone operator and a strictly pseudocontractive mapping in a real Hilbert space. The results of this paper extend and improve the results of Chen, Zhang and Fan.



Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 215
Author(s):  
Ming Tian ◽  
Meng-Ying Tong

In this paper, based on the Yamada iteration, we propose an iteration algorithm to find a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse strongly-monotone mapping. We obtain a weak convergence theorem in Hilbert space. In particular, the set of zero points of an inverse strongly-monotone mapping can be transformed into the solution set of the variational inequality problem. Further, based on this result, we also obtain some new weak convergence theorems which are used to solve the equilibrium problem and the split feasibility problem.



2011 ◽  
Vol 2011 ◽  
pp. 1-25
Author(s):  
Rattanaporn Wangkeeree ◽  
Uthai Kamraksa ◽  
Rabian Wangkeeree

We introduce a general composite algorithm for finding a common element of the set of solutions of a general equilibrium problem and the common fixed point set of a finite family of asymptotically nonexpansive mappings in the framework of Hilbert spaces. Strong convergence of such iterative scheme is obtained which solving some variational inequalities for a strongly monotone and strictly pseudocontractive mapping. Our results extend the corresponding recent results of Yao and Liou (2010).



Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1423-1434 ◽  
Author(s):  
Sheng Wang ◽  
Min Chen

In this paper, we propose an iterative algorithm for finding the common element of solution set of a split equilibrium problem and common fixed point set of a finite family of asymptotically nonexpansive mappings in Hilbert space. The strong convergence of this algorithm is proved.



2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Tanom Chamnarnpan ◽  
Poom Kumam

We introduce a new iterative algorithm for solving a common solution of the set of solutions of fixed point for an infinite family of nonexpansive mappings, the set of solution of a system of mixed equilibrium problems, and the set of solutions of the variational inclusion for aβ-inverse-strongly monotone mapping in a real Hilbert space. We prove that the sequence converges strongly to a common element of the above three sets under some mild conditions. Furthermore, we give a numerical example which supports our main theorem in the last part.



Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1727-1746 ◽  
Author(s):  
D.R. Sahu ◽  
Ajeet Kumar ◽  
Ching-Feng Wen

This paper is devoted to the strong convergence of the S-iteration process of Halpern-type for approximating a common element of the set of fixed points of a nonexpansive mapping and the set of common solutions of variational inequality problems formed by two inverse strongly monotone mappings in the framework of Hilbert spaces. We also give some numerical examples in support of our main result.



2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Rabian Wangkeeree ◽  
Panatda Boonman

We first introduce the iterative procedure to approximate a common element of the fixed-point set of two quasinonexpansive mappings and the solution set of the system of mixed equilibrium problem (SMEP) in a real Hilbert space. Next, we prove the weak convergence for the given iterative scheme under certain assumptions. Finally, we apply our results to approximate a common element of the set of common fixed points of asymptotic nonspreading mapping and asymptoticTJmapping and the solution set of SMEP in a real Hilbert space.



2009 ◽  
Vol 2009 ◽  
pp. 1-18 ◽  
Author(s):  
Chakkrid Klin-eam ◽  
Suthep Suantai ◽  
Wataru Takahashi

We establish strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of two relatively nonexpansive mappings in a Banach space by using a new hybrid method. Moreover we apply our main results to obtain strong convergence for a maximal monotone operator and two nonexpansive mappings in a Hilbert space.



2012 ◽  
Vol 2012 ◽  
pp. 1-23
Author(s):  
Haitao Che ◽  
Meixia Li ◽  
Xintian Pan

We first extend the definition of Wnfrom an infinite family of nonexpansive mappings to an infinite family of strictly pseudocontractive mappings, and then propose an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of an infinite family ofki-strictly pseudocontractive mappings in Hilbert spaces. The results obtained in this paper extend and improve the recent ones announced by many others. Furthermore, a numerical example is presented to illustrate the effectiveness of the proposed scheme.



2018 ◽  
Vol 1 (30) ◽  
pp. 67-77
Author(s):  
Hieu Trung Nguyen ◽  
Tien Cam Truong

In this paper, we propose a new hybrid iteration for finding a common element of solution set of equilibrium problems and the fixed point set of mappings  satisfying condi- tion (Φ-Eµ), and establish the convergence of this iteration in uniformly convex and uniformly smooth Banach spaces. From this theorem, we geta corollary for the convergence for equilibrium problems and mappings satisfying condition (Eµ) in real Hilbert spaces. In addition, an example is provided to illustrate for the convergence of equilibrium problems and mappings satisfying condition (Φ-Eµ). These results are the generations and improvements of some  existing results in the literature



Sign in / Sign up

Export Citation Format

Share Document