scholarly journals Degradation of Abamectin Using the Photo-Fenton Process

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Thiago Augusto de Freitas Matos ◽  
Alexandra Lemos Nunes Dias ◽  
Amanda Di Piazza Reis ◽  
Milady Renata Apolinário da Silva ◽  
Márcia Matiko Kondo

The cultivation of strawberries generally requires substantial use of pesticides, and abamectin is the active principle of one of those most commonly employed. Conventional water treatment does not remove pesticides efficiently, so there is a need to investigate alternative procedures. The use of advanced oxidation processes (AOPs) can achieve good results in removal of toxic organic compounds present in aqueous solutions. The photo-Fenton process, one example of an AOP, was employed to study the degradation of abamectin. Results showed that when natural water samples contaminated with abamectin were treated using the photo-Fenton process, 70% of the initial amount of the compound was removed within 60 minutes of UV irradiation, and 60% mineralization was observed after 180 minutes of reaction.

2010 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
R. Mosteo ◽  
N. Miguel ◽  
P. Ormad Maria ◽  
J. L. Ovelleiro

Any nonylphenol compounds found in water have to be removed since they are endocrine disruptors. In this study, natural water from the river Ebro fortified with nonylphenol compounds (4n-nonylphenol and technical nonylphenol) is used as a sample in order to simulate a real situation in drinking water treatment plants. The aim is to compare conventional disinfection with advanced oxidation processes (O3, O3/H2O2, O3/TiO2 and O3/H2O2/TiO2) used for the removal of nonylphenol compounds present in natural water. Furthermore, a study is carried out of the by-products (THMs) generated as a consequence of the presence of natural organic matter. Preoxidation by chlorine completely oxidizes 4n-nonylphenol and technical nonylphenol. It can be seen that the best of the advanced oxidation processes is the O3/H2O2, achieving an average oxidation of 55%, although the differences among the processes were not very significant. Furthermore, the use of post-chlorination guarantees the total removal of nonylphenol compounds.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7742
Author(s):  
Laura Cipriano Crapina ◽  
Liva Dzene ◽  
Jocelyne Brendlé ◽  
Florence Fourcade ◽  
Abdeltif Amrane ◽  
...  

Advanced oxidation processes are considered as a promising technology for the removal of persistent organic pollutants from industrial wastewaters. In particular, the heterogeneous electro-Fenton (HEF) process has several advantages such as allowing the working pH to be circumneutral or alkaline, recovering and reusing the catalyst and avoiding the release of iron in the environment as a secondary pollutant. Among different iron-containing catalysts, studies using clay-modified electrodes in HEF process are the focus in this review. Fe(III)/Fe(II) within the lattice of clay minerals can possibly serve as catalytic sites in HEF process. The description of the preparation and application of clay-modified electrodes in the degradation of model pollutants in HEF process is detailed in the review. The absence of mediators responsible for transferring electrons to structural Fe(III) and regenerating catalytic Fe(II) was considered as a milestone in the field. A comprehensive review of studies investigating the use of electron transfer mediators as well as the mechanism behind electron transfer from and to the clay mineral structure was assembled in order to uncover other milestones to be addressed in this study area.


2002 ◽  
Vol 2 (1) ◽  
pp. 129-138 ◽  
Author(s):  
G.F. Ijpelaar ◽  
M. Groenendijk ◽  
R. Hopman ◽  
Joop C. Kruithof

An overview of the Advanced Oxidation Processes (AOP) studied for the degradation of pesticides combined with the formation of by-products is presented. It was found that the degree of conversion of pesticides is about the same with the Fenton process and UV/H2O2 within the margin of practical application, but slightly different with ozone/H2O2. Bentazone is readily degraded by the latter process, but more persistent during water treatment with the Fenton process and UV/H2O2, whilst atrazine is difficult to convert with all of these processes. Although bromate formation cannot be avoided completely with ozone/H2O2, it can be realized with the Fenton process and UV/H2O2. Upon degradation of pesticides with UV/H2O2 nitrite is produced, the amount depending on the water quality with respect to the nitrate concentration. Based on the a-selective nature of the hydroxyl radical AOC is formed out of DOC, which indicates that ozone/H2O2, the Fenton process as well as UV/H2O2 should be applicable for the development of biological GAC filtration.


2004 ◽  
Vol 49 (4) ◽  
pp. 273-277 ◽  
Author(s):  
B. Slomczynska ◽  
J. Wasowski ◽  
T. Slomczynski

The aim of the present study was to assess the effect of advanced oxidation processes (AOPs) (oxidation ozone and peroxide/ozone) on the toxicity of leachates from municipal landfill for Warsaw, Poland, using a battery of tests. AOPs used to pre-treat leachates were carried out in laboratory conditions after their coagulation with the use of FeCl3. The effects of the pre-treatment of leachates using the method of coagulation with FeCl3 depended on the concentration of organic compounds and with optimal conditions of the process ranged from 40 to 70%. Further pre-treatment of the leachates after coagulation, involving the use of oxidation with O3 and H2O2/O3, did not cause significant decrease of leachate toxicity. The data of this study demonstrated the usefulness of the battery of tests using Daphnia magna, Artemia franciscana, Scenedesmus quadricauda and Vibrio fischeri for the toxicity evaluation of raw and pre-treated leachates.


Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


Sign in / Sign up

Export Citation Format

Share Document