scholarly journals Application of Fourier Transform Infrared Spectroscopy for the Oxidation and Peroxide Value Evaluation in Virgin Walnut Oil

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Pengjuan Liang ◽  
Chaoyin Chen ◽  
Shenglan Zhao ◽  
Feng Ge ◽  
Diqiu Liu ◽  
...  

Recent developments in Fourier transform infrared spectroscopy-partial least squares (FTIR-PLSs) extend the application of this strategy to the field of the edible oils and fats research. In this work, FT-IR spectroscopy was used as an effective analytical tool to determine the peroxide value of virgin walnut oil (VWO) samples undergone during heating. The spectra were recorded from a film of pure oil between two disks of KBr for each sample at frequency regions of 4000–650 cm−1. Changes in the values of the frequency of most of the bands of the spectra were observed and used to build the calibration model. PLS model correlates the actual and FT-IR estimated value of peroxide value with a correlation coefficient of 0.99, and the root mean square error of the calibration (RMSEC) value is 0.4838. The methodology has potential as a fast and accurate way for the quantification of peroxide value of the edible oils.

2020 ◽  
Vol 13 (1) ◽  
pp. 183-199 ◽  
Author(s):  
Yirui Zhang ◽  
Yu Katayama ◽  
Ryoichi Tatara ◽  
Livia Giordano ◽  
Yang Yu ◽  
...  

Carbonate oxidation via dehydrogenation on LiNi0.8Co0.1Mn0.1O2 at voltages as low as 3.8 VLi was revealed by in situ FT-IR measurements.


2019 ◽  
Vol 73 (7) ◽  
pp. 767-773
Author(s):  
Ryan C. Ogliore ◽  
Cosette Dwyer ◽  
Michael J. Krawczynski ◽  
Hélène Couvy ◽  
Max Eisele ◽  
...  

We report an infrared (IR) spectroscopic technique to detect quartz grains with large isotope anomalies. We synthesized isotopically doped quartz and used Fourier transform infrared spectroscopy (FT-IR) in two different instruments: a traditional far-field instrument and a neaSpec nanoFT-IR, to quantify the shift in the peak of the Si–O stretch near 780 cm−1 as a function of isotope composition, and the uncertainty in this shift. From these measurements, we estimated the minimum detectable isotope anomaly using FT-IR. The described technique can be used to nondestructively detect very small (30 nm) presolar grains. In particular, supernova grains, which can have very large isotope anomalies, are detectable by this method.


Sign in / Sign up

Export Citation Format

Share Document