scholarly journals Use of Insulin to Increase Epiblast Cell Number: Towards a New Approach for Improving ESC Isolation from Human Embryos

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Jared M. Campbell ◽  
Michelle Lane ◽  
Ivan Vassiliev ◽  
Mark B. Nottle

Human embryos donated for embryonic stem cell (ESC) derivation have often been cryopreserved for 5–10 years. As a consequence, many of these embryos have been cultured in media now known to affect embryo viability and the number of ESC progenitor epiblast cells. Historically, these conditions supported only low levels of blastocyst development necessitating their transfer or cryopreservation at the 4–8-cell stage. As such, these embryos are donated at the cleavage stage and require further culture to the blastocyst stage before hESC derivation can be attempted. These are generally of poor quality, and, consequently, the efficiency of hESC derivation is low. Recent work using a mouse model has shown that the culture of embryos from the cleavage stage with insulin to day 6 increases the blastocyst epiblast cell number, which in turn increases the number of pluripotent cells in outgrowths following plating, and results in an increased capacity to give rise to ESCs. These findings suggest that culture with insulin may provide a strategy to improve the efficiency with which hESCs are derived from embryos donated at the cleavage stage.

2004 ◽  
Vol 16 (2) ◽  
pp. 202 ◽  
Author(s):  
W.F. Swanson ◽  
A.L. Manharth ◽  
J.B. Bond ◽  
H.L. Bateman ◽  
R.L. Krisher ◽  
...  

Domestic cat embryos typically are cultured in media formulated for somatic cells or embryos from rodents or livestock species. Under these conditions, blastocyst development has been inconsistent and delayed relative to embryos grown in vivo, and embryo viability following transfer has been low. Our goal is to systematically define the culture requirements of the feline embryo to improve embryo development and viability. The objective of this study was to determine the ionic (NaCl, KCl, KH2PO4, and CaCl2:MgSO4) preferences of domestic cat IVF embryos. Anestral female cats were injected (i.m.) with 150IU eCG followed 84h later by 100IUhCG. Oocytes were recovered via laparoscopic follicular aspiration approximately 24h post-hCG injection (Day 0). Semen was collected from one of two males by means of an artificial vagina and washed once in HEPES-buffered IVF medium. Mature cumulus-oocyte complexes were co-incubated with 2.5–5×105 motile sperm mL−1 in IVF medium (100mM NaCl, 4.0mM KCl, 1.0mM KH2 PO4, 2.0mM CaCl2, 1.0mM MgSO4-7H2O, 25.0mM NaHCO3, 3.0mM glucose, 0.1mM pyruvate, 6.0mM L-lactate, 1.0mM glutamine, 0.1mM taurine, 1×MEM nonessential amino acids, 50μgmL−1 gentamicin, and 4.0mgmL−1 BSA) for 19 to 22h in 6% CO2 in air (38.7°C). Cumulus cells were removed and embryos cultured (8–11 embryos/50μL drop; 6% CO2, 5% O2, 89% N2, 38.7°C) in media containing 100.0 or 120.0mM NaCl, 4.0 or 8.0mM KCl, 0.25 or 1.0mM KH2PO4, and 1.0mM:2.0mM or 2.0mM:1.0mM CaCl2:MgSO4 (2×2×2×2 factorial design). The remaining components of the culture medium were identical to the IVF medium (but w/o gentamicin). Development to the blastocyst stage by Day 6, metabolism (glycolysis and pyruvate) of each blastocyst, and final cell number (Hoechst 33342 staining) of all embryos were evaluated. Final cell number of cleaved embryos and development to the blastocyst stage were analyzed using analysis of variance in the GLIMMIX macro of SAS. A total of 236 oocytes were inseminated, yielding 128 cleaved embryos (54%), including 6 blastocysts (4.7% of cleaved embryos). Cell number was not (P>0.05) affected by NaCl, KCl, or KH2PO4 concentrations, but tended (P=0.057) to be higher after culture in 2.0mM:1.0mM CaCl2:MgSO4. Treatments did not significantly affect (P>0.05) development to the blastocyst stage, but numerically more blastocysts were produced in 100.0mM NaCl (4/6), 8.0mM KCl (5/6), or 1.0mM KH2PO4 (5/6). Both CaCl2:MgSO4 ratios resulted in 3 blastocysts. Blastocysts contained 61.08±5.1 (mean±SEM, n=6) cells and actively metabolized glucose (glycolysis, 3.7±0.8pmol/embryo/3h or 0.06±0.01pmol/cell/3h) and pyruvate (0.75±0.27pmol/embryo/3h or 0.013±0.005pmol/cell/3h). These results suggest that the ionic composition of culture media influences the in vitro development of cat IVF embryos. (Supported by NIH grant RR15388.)


2006 ◽  
Vol 18 (2) ◽  
pp. 248
Author(s):  
S.-G. Lee ◽  
C.-H. Park ◽  
D.-H. Choi ◽  
H.-Y. Son ◽  
C.-K. Lee

Use of blastocysts produced in vitro would be an efficient way to generate embryonic stem (ES) cells for the production of transgenic animals and the study of developmental gene regulation. In pigs, the morphology and cell number of in vitro-produced blastocysts are inferior to these parameters in their in vivo counterparts. Therefore, establishment of ES cells from blastocysts produced in vitro might be hindered by poor embryo quality. The objective of this study was to increase the cell number of blastocysts derived by aggregating 4–8-cell stage porcine embryos produced in vitro. Cumulus–oocyte complexes were collected from prepubertal gilt ovaries, and matured in vitro. Embryos at the 4–8-cell stage were produced by culturing embryos for two days after in vitro fertilization (IVF). After removal of the zona pellucida with acid Tyrode’s solution, one (1X), two (2X), and three (3X) 4–8-cell stage embryos were aggregated by co-culturing them in aggregation plates followed by culturing to the blastocyst stage. After 7 days, the developmental ability and the number of cells in aggregated embryos were determined by staining with Hoechst 33342 and propidium iodide. The percentage of blastocysts was higher in both 2X and 3X aggregated embryos compared to that of 1X and that of intact controls (Table 1). The cell number of blastocysts also increased in aggregated embryos compared to that of non-aggregated (1X) embryos and controls. This result suggests that aggregation might improve the quality of in vitro-fertilized porcine blastocysts by increasing cell numbers, thus becoming a useful resource for isolation and establishment of porcine ES cells. Further studies are required to investigate the quality of the aggregated embryos in terms of increasing the pluripotent cell population by staining for Oct-4 and to apply improved aggregation methods in nuclear-transferred (NT) porcine embryos. Table 1. Development, cell number, and ICM ratio of aggregated porcine embryos


2009 ◽  
Vol 21 (9) ◽  
pp. 21
Author(s):  
J. M. Campbell ◽  
I. Vassiliev ◽  
M. B. Nottle ◽  
M. Lane

Human ESCs are produced from embryos donated at the mid-stage of pre-implantation development. This cryostorage reduced viability. However, it has been shown that this can be improved by the addition of growth factors to culture medium. The aim of the present study was to examine whether the addition of insulin to embryo culture medium from the 8-cell stage of development increases the number of ES cell progenitor cells in the epiblast in a mouse model. In vivo produced mouse zygotes (C57Bl6 strain) were cultured in G1 medium for 48h to the 8-cell stage, followed by culture in G2 supplemented with insulin (0, 0.17, 1.7 and 1700pM) for 68h, at 37 o C , in 5% O2, 6%CO2, 89% N2 . The number of cells in the inner cell mass (ICM) and epiblast was determined by immunohistochemical staining for Oct4 and Nanog. ICM cells express Oct4, epiblast cells express both Oct4 and Nanog. The addition of insulin at the concentrations examined did not increase the ICM. However, at 1.7pM insulin increased the number of epiblast cells (6.6±0.5 cells vs 4.1±0.5, P=0.001) in the ICM, which increased the proportion of the ICM that was epiblast (38.9±3.7% compared to 25.8±3.4% in the control P=0.01). This indicates that the increase in the epiblast is brought about by a shift in cell fate as opposed to an increase in cell division. The effect of insulin on the proportion of cells in the epiblast was investigated using inhibitors of phosphoinositide3-kinase (PI3K) (LY294002, 50µM); one of insulin's main second messengers, and p53 (pifithrin-α, 30µg/ml); a pro-apoptotic protein inactivated by PI3K. Inhibition of PI3K eliminated the increase caused by insulin (4.5±0.3 cells versus 2.2±0.3 cells, P<0.001), while inhibition of p53 increased the epiblast cell number compared to the control (7.1±0.8 and 4.1±0.7 respectively P=0.001). This study shows that insulin increases epiblast cell number through the activation of PI3K and the inhibition of p53, and may be a strategy for improving ESC isolation from human embryos.


2005 ◽  
Vol 17 (9) ◽  
pp. 127
Author(s):  
D. L. Zander ◽  
J. G. Thompson ◽  
M. Lane

Extended embryo culture in vitro may cause increased cellular perturbations resulting in poorer developmental outcomes. Exposure of embryos to ammonium throughout the entire pre-implantation period decreased cell number and ICM development, increased apoptosis and perturbs glucose metabolism. The aim of this study was to examine the relative susceptibility of the pre- and post-compaction stage embryo to these perturbations resulting from temporal exposure to ammonium. Mouse embryos (n = 350 per treatment) were collected from F1 female mice. Embryos were exposed to either control medium or medium with 300 μM ammonium for the entire culture period. Temporal treatments involved culture with or without ammonium, from the zygote to 2-cell stage, 2-cell to 8-cell stage, or the 8-cell to the blastocyst stage. At the blastocyst stage, ICM development, apoptosis, gene expression and glucose metabolism were assessed. Differences between treatments were determined using generalised linear modelling and LSD post-hoc tests. Exposure to ammonium at any stage did not affect blastocyst development. Exposure to ammonium pre-compaction significantly decreased both blastocyst and ICM cell number while these were unaffected when exposure occurred post-compaction. Levels of apoptosis were significantly increased when exposure to ammonium was continual to the blastocyst stage (6.5% compared to control 2.4%, P < 0.05) or from the zygote to the 2-cell stage (5.8%, P < 0.05). However, apoptosis was not altered during post-compaction exposure (2.8%). Glucose uptake was decreased by culture with ammonium at all stages of development (P < 0.001). Gene expression of GLUT1 in the blastocyst was not altered by ammonium while GLUT3 expression was significantly reduced by exposure at all stages of development (P < 0.01). The data presented suggests that the pre-compaction stage embryo is most susceptible to ammonium stress and the effects of this early stage exposure appear irreversible. Intriguingly, glucose uptake and GLUT3 expression at the blastocyst stage appear to be markers of ammonium exposure.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Svetlana Gavrilov ◽  
Darja Marolt ◽  
Nataki C. Douglas ◽  
Robert W. Prosser ◽  
Imran Khalid ◽  
...  

We report the derivation and characterization of two new human embryonic stem cells (hESC) lines (CU1 and CU2) from embryos with an irreversible loss of integrated organismic function. In addition, we analyzed retrospective data of morphological progression from embryonic day (ED) 5 to ED6 for 2480 embryos not suitable for clinical use to assess grading criteria indicative of loss of viability on ED5. Our analysis indicated that a large proportion ofin vitrofertilization (IVF) embryos not suitable for clinical use could be used for hESC derivation. Based on these combined findings, we propose that criteria commonly used in IVF clinics to determine optimal embryos for uterine transfer can be employed to predict the potential for hESC derivation from poor quality embryos without the destruction of vital human embryos.


1990 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
H Monis ◽  
BD Bavister

Constituents of the culture milieu known to influence development of hamster 2-cell and 8-cell embryos were examined for effects on the 4-cell stage. Embryos were collected at the mid 4-cell stage (approx. 45-46 h after egg activation) from superovulated females and cultured for 24 h in a chemically defined medium (TLP-PVA). As with the 2-cell stage, inorganic phosphate (Pi) strongly inhibited development of 4-cell embryos, although some (14%) were able to reach the 8-cell stage or further in the presence of Pi. However, unlike 2-cell embryos, no significant inhibitory effect of glucose on development of 4-cell embryos was found. In the absence of glucose and Pi, development of 4-cell embryos was sensitive to amino acids in the medium: the mean cell number was increased using 21 amino acids compared with 4 amino acids, similarly to the 2-cell stage; however, late blastocyst development (blastocele formation) from 4-cell embryos was reduced using 21 compared with 4 amino acids, as with 8-cell embryos. Similarly to the 2-cell and 8-cell stages, raising the CO2 concentration from 5% to 10% in the gas atmosphere for culture increased the percentage of total blastocysts developing from the 4-cell stage, but did not affect the proportions of late-stage blastocysts. These data show that 4-cell-stage hamster embryos are somewhat similar to 2-cell embryos with respect to the regulation of development by constituents of the culture milieu, but, to some extent, the 4-cell embryo is a transitional stage of development.


Reproduction ◽  
2006 ◽  
Vol 131 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Mark G Larman ◽  
Courtney B Sheehan ◽  
David K Gardner

Despite the success of embryo cyropreservation, routine oocyte freezing has proved elusive with only around 200 children born since the first reported birth in 1986. The reason for the poor efficiency is unclear, but evidence of zona pellucida hardening following oocyte freezing indicates that current protocols affect oocyte physiology. Here we report that two cryoprotectants commonly used in vitrification procedures, dimethyl sulfoxide (DMSO) and ethylene glycol, cause a large transient increase in intracellular calcium concentration in mouse metaphase II (MII) oocytes comparable to the initial increase triggered at fertilization. Removal of extracellular calcium from the medium failed to affect the response exacted by DMSO challenge, but significantly reduced the ethylene glycol-induced calcium increase. These results suggest that the source of the DMSO-induced calcium increase is solely from the internal calcium pool, as opposed to ethylene glycol that causes an influx of calcium across the plasma membrane from the external medium. By carrying out vitrification in calcium-free media, it was found that zona hardening is significantly reduced and subsequent fertilization and development to the two-cell stage significantly increased. Furthermore, such calcium-free treatment appears not to affect the embryo adversely, as shown by development rates to the blastocyst stage and cell number/allocation. Since zona hardening is one of the early activation events normally triggered by the sperm-induced calcium increases observed at fertilization, it is possible that other processes are negatively affected by the calcium rise caused by cryoprotectants used during oocyte freezing, which might explain the current poor efficiency of this technique.


2000 ◽  
Vol 8 (3) ◽  
pp. 241-287 ◽  
Author(s):  
GM Jones

The transfer of a blastocyst established the first human clinical pregnancy following in vitro fertilization (IVF). Nine years later Cohen et al. reported pregnancies resulting from the transfer of cryopreserved human blastocysts. However, it was another six years before the first report of births resulting from the transfer of human blastocysts produced in vitro appeared in the medical literature. In the intervening period clinics have opted to transfer embryos at the early cleavage stage to the uterus, despite the fact that in vivo the embryo does not enter the uterus until two to three days later at the morula to blastocyst stage of development. The viability and potential for implantation of blastocysts is high, as indicated by the finding that more than 60% of in-vivo-derived blastocysts, recovered by uterine lavage following artificial insemination of fertile donors, implant and develop into viable fetuses when transferred to recipients. This is in stark contrast to the 10–20% of in-vitro-produced embryos transferred at the early cleavage stage of development that result in a live-birth. This reduction in viability following transfer of in-vitro-derived early cleavage stage embryos may have several possible explanations: (1) a failure of implantation due to poor synchronization between the embryo and the uterine endometrium; (2) a hostile environment in the uterus for early cleavage stage embryos; (3) sub-optimal in vitro culture conditions which result in a reduction in embryo viability; (4) the assumption that all oocytes retrieved in an IVF cycle have an equal ability to develop into viable embryos; and (5) the failure to identify the most viable embryo in a cohort. Certainly, improving culture conditions and laboratory techniques for developing high quality blastocysts routinely in vitro will not only address many of the above questions but will also improve the quality and viability of earlier stages of embryo development.


Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 597-604 ◽  
Author(s):  
K. Hardy ◽  
A.H. Handyside ◽  
R.M. Winston

The development of 181 surplus human embryos, including both normally and abnormally fertilized, was observed from day 2 to day 5, 6 or 7 in vitro. 63/149 (42%) normally fertilized embryos reached the blastocyst stage on day 5 or 6. Total, trophectoderm (TE) and inner cell mass (ICM) cell numbers were analyzed by differential labelling of the nuclei with polynucleotide-specific fluorochromes. The TE nuclei were labelled with one fluorochrome during immunosurgical lysis, before fixing the embryo and labelling both sets of nuclei with a second fluorochrome (Handyside and Hunter, 1984, 1986). Newly expanded normally fertilized blastocysts on day 5 had a total of 58.3 +/− 8.1 cells, which increased to 84.4 +/− 5.7 and 125.5 +/− 19 on days 6 and 7, respectively. The numbers of TE cells were similar on days 5 and 6 (37.9 +/− 6.0 and 40.3 +/− 5.0, respectively) and then doubled on day 7 (80.6 +/− 15.2). In contrast, ICM cell numbers doubled between days 5 and 6 (20.4 +/− 4.0 and 41.9 +/− 5.0, respectively) and remained virtually unchanged on day 7 (45.6 +/− 10.2). There was widespread cell death in both the TE and ICM as evidenced by fragmenting nuclei, which increased substantially by day 7. These results are compared with the numbers of cells in morphologically abnormal blastocysts and blastocysts derived from abnormally fertilized embryos. The nuclei of arrested embryos were also examined. The number of TE and ICM cells allocated in normally fertilized blastocysts appears to be similar to the numbers allocated in the mouse. Unlike the mouse, however, the proportion of ICM cells remains higher, despite cell death in both lineages.


2019 ◽  
Vol 31 (12) ◽  
pp. 1862 ◽  
Author(s):  
N. A. Martino ◽  
G. Marzano ◽  
A. Mastrorocco ◽  
G. M. Lacalandra ◽  
L. Vincenti ◽  
...  

Time-lapse imaging was used to establish the morphokinetics of equine embryo development to the blastocyst stage after invitro oocyte maturation (IVM), intracytoplasmic sperm injection (ICSI) and embryo culture, in oocytes held overnight at room temperature (22–27°C; standard conditions) before IVM. Embryos that developed to the blastocyst stage underwent precleavage cytoplasmic extrusion and cleavage to the 2-, 3- and 4-cell stages significantly earlier than did embryos that arrested in development. We then determined the rate of blastocyst formation after ICSI in oocytes held for 2 days at either 15°C or room temperature before IVM (15-2d and RT-2d treatment groups respectively). The blastocyst development rate was significantly higher in the 15-2d than in the RT-2d group (13% vs 0% respectively). The failure of blastocyst development in the RT-2d group precluded comparison of morphokinetics of blastocyst development between treatments. In any condition examined, development to the blastocyst stage was characterised by earlier cytoplasmic extrusion before cleavage, earlier cleavage to 2- and 4-cell stages and reduced duration at the 2-cell stage compared with non-competent embryos. In conclusion, this study presents morphokinetic parameters predictive of embryo development invitro to the blastocyst stage after ICSI in the horse. We conclude that time-lapse imaging allows increased precision for evaluating effects of different treatments on equine embryo development.


Sign in / Sign up

Export Citation Format

Share Document