scholarly journals Text Mining Perspectives in Microarray Data Mining

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeyakumar Natarajan

Current microarray data mining methods such as clustering, classification, and association analysis heavily rely on statistical and machine learning algorithms for analysis of large sets of gene expression data. In recent years, there has been a growing interest in methods that attempt to discover patterns based on multiple but related data sources. Gene expression data and the corresponding literature data are one such example. This paper suggests a new approach to microarray data mining as a combination of text mining (TM) and information extraction (IE). TM is concerned with identifying patterns in natural language text and IE is concerned with locating specific entities, relations, and facts in text. The present paper surveys the state of the art of data mining methods for microarray data analysis. We show the limitations of current microarray data mining methods and outline how text mining could address these limitations.

Author(s):  
WEIXIANG LIU ◽  
KEHONG YUAN ◽  
JIAN WU ◽  
DATIAN YE ◽  
ZHEN JI ◽  
...  

Classification of gene expression samples is a core task in microarray data analysis. How to reduce thousands of genes and to select a suitable classifier are two key issues for gene expression data classification. This paper introduces a framework on combining both feature extraction and classifier simultaneously. Considering the non-negativity, high dimensionality and small sample size, we apply a discriminative mixture model which is designed for non-negative gene express data classification via non-negative matrix factorization (NMF) for dimension reduction. In order to enhance the sparseness of training data for fast learning of the mixture model, a generalized NMF is also adopted. Experimental results on several real gene expression datasets show that the classification accuracy, stability and decision quality can be significantly improved by using the generalized method, and the proposed method can give better performance than some previous reported results on the same datasets.


Author(s):  
Lei Yu ◽  
Huan Liu

The advent of gene expression microarray technology enables the simultaneous measurement of expression levels for thousands or tens of thousands of genes in a single experiment (Schena, et al., 1995). Analysis of gene expression microarray data presents unprecedented opportunities and challenges for data mining in areas such as gene clustering (Eisen, et al., 1998; Tamayo, et al., 1999), sample clustering and class discovery (Alon, et al., 1999; Golub, et al., 1999), sample class prediction (Golub, et al., 1999; Wu, et al., 2003), and gene selection (Xing, Jordan, & Karp, 2001; Yu & Liu, 2004). This article introduces the basic concepts of gene expression microarray data and describes relevant data-mining tasks. It briefly reviews the state-of-the-art methods for each data-mining task and identifies emerging challenges and future research directions in microarray data analysis.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 154 ◽  
Author(s):  
Ho Sun Shon ◽  
Erdenebileg Batbaatar ◽  
Kyoung Ok Kim ◽  
Eun Jong Cha ◽  
Kyung-Ah Kim

Recently, large-scale bioinformatics and genomic data have been generated using advanced biotechnology methods, thus increasing the importance of analyzing such data. Numerous data mining methods have been developed to process genomic data in the field of bioinformatics. We extracted significant genes for the prognosis prediction of 1157 patients using gene expression data from patients with kidney cancer. We then proposed an end-to-end, cost-sensitive hybrid deep learning (COST-HDL) approach with a cost-sensitive loss function for classification tasks on imbalanced kidney cancer data. Here, we combined the deep symmetric auto encoder; the decoder is symmetric to the encoder in terms of layer structure, with reconstruction loss for non-linear feature extraction and neural network with balanced classification loss for prognosis prediction to address data imbalance problems. Combined clinical data from patients with kidney cancer and gene data were used to determine the optimal classification model and estimate classification accuracy by sample type, primary diagnosis, tumor stage, and vital status as risk factors representing the state of patients. Experimental results showed that the COST-HDL approach was more efficient with gene expression data for kidney cancer prognosis than other conventional machine learning and data mining techniques. These results could be applied to extract features from gene biomarkers for prognosis prediction of kidney cancer and prevention and early diagnosis.


2005 ◽  
Vol 03 (02) ◽  
pp. 303-316 ◽  
Author(s):  
ZHENQIU LIU ◽  
DECHANG CHEN ◽  
HALIMA BENSMAIL ◽  
YING XU

Kernel principal component analysis (KPCA) has been applied to data clustering and graphic cut in the last couple of years. This paper discusses the application of KPCA to microarray data clustering. A new algorithm based on KPCA and fuzzy C-means is proposed. Experiments with microarray data show that the proposed algorithms is in general superior to traditional algorithms.


2013 ◽  
Vol 11 (03) ◽  
pp. 1341006
Author(s):  
QIANG LOU ◽  
ZORAN OBRADOVIC

In order to more accurately predict an individual's health status, in clinical applications it is often important to perform analysis of high-dimensional gene expression data that varies with time. A major challenge in predicting from such temporal microarray data is that the number of biomarkers used as features is typically much larger than the number of labeled subjects. One way to address this challenge is to perform feature selection as a preprocessing step and then apply a classification method on selected features. However, traditional feature selection methods cannot handle multivariate temporal data without applying techniques that flatten temporal data into a single matrix in advance. In this study, a feature selection filter that can directly select informative features from temporal gene expression data is proposed. In our approach, we measure the distance between multivariate temporal data from two subjects. Based on this distance, we define the objective function of temporal margin based feature selection to maximize each subject's temporal margin in its own relevant subspace. The experimental results on synthetic and two real flu data sets provide evidence that our method outperforms the alternatives, which flatten the temporal data in advance.


Sign in / Sign up

Export Citation Format

Share Document