scholarly journals Reverse Engineering Sparse Gene Regulatory Networks Using Cubature Kalman Filter and Compressed Sensing

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amina Noor ◽  
Erchin Serpedin ◽  
Mohamed Nounou ◽  
Hazem Nounou

This paper proposes a novel algorithm for inferring gene regulatory networks which makes use of cubature Kalman filter (CKF) and Kalman filter (KF) techniques in conjunction with compressed sensing methods. The gene network is described using a state-space model. A nonlinear model for the evolution of gene expression is considered, while the gene expression data is assumed to follow a linear Gaussian model. The hidden states are estimated using CKF. The system parameters are modeled as a Gauss-Markov process and are estimated using compressed sensing-based KF. These parameters provide insight into the regulatory relations among the genes. The Cramér-Rao lower bound of the parameter estimates is calculated for the system model and used as a benchmark to assess the estimation accuracy. The proposed algorithm is evaluated rigorously using synthetic data in different scenarios which include different number of genes and varying number of sample points. In addition, the algorithm is tested on the DREAM4 in silico data sets as well as the in vivo data sets from IRMA network. The proposed algorithm shows superior performance in terms of accuracy, robustness, and scalability.

2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

Gene Regulatory Networks (GRNs) are the pioneering methodology for finding new gene interactions getting insights of the biological processes using time series gene expression data. It remains a challenge to study the temporal nature of gene expression data that mimic complex non-linear dynamics of the network. In this paper, an intelligent framework of recurrent neural network (RNN) and swarm intelligence (SI) based Particle Swarm Optimization (PSO) with controlled behaviour has been proposed for the reconstruction of GRN from time-series gene expression data. A novel PSO algorithm enhanced by human cognition influenced by the ideology of Bhagavad Gita is employed for improved learning of RNN. RNN guided by the proposed algorithm simulates the nonlinear and dynamic gene interactions to a greater extent. The proposed method shows superior performance over traditional SI algorithms in searching biologically plausible candidate networks. The strength of the method is verified by analyzing the small artificial network and real data of Escherichia coli with improved accuracy.


2019 ◽  
Author(s):  
Julia Åkesson ◽  
Zelmina Lubovac-Pilav ◽  
Rasmus Magnusson ◽  
Mika Gustafsson

AbstractSummaryHub transcription factors, regulating many target genes in gene regulatory networks (GRNs), play important roles as disease regulators and potential drug targets. However, while numerous methods have been developed to predict individual regulator-gene interactions from gene expression data, few methods focus on inferring these hubs. We have developed ComHub, a tool to predict hubs in GRNs. ComHub makes a community prediction of hubs by averaging over predictions by a compendium of network inference methods. Benchmarking ComHub to the DREAM5 challenge data and an independent data set of human gene expression, proved a robust performance of ComHub over all data sets. Lastly, we implemented ComHub to work with both predefined networks and to do standard network inference, which we believe will make it generally applicable.AvailabilityCode is available at https://gitlab.com/Gustafsson-lab/[email protected], [email protected]


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mika J. Välimäki ◽  
Robert S. Leigh ◽  
Sini M. Kinnunen ◽  
Alexander R. March ◽  
Ana Hernández de Sande ◽  
...  

AbstractBackgroundPharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration.MethodsTranscription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression.ResultsGATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression.ConclusionsCollectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Neel Patel ◽  
William S. Bush

Abstract Background Transcriptional regulation is complex, requiring multiple cis (local) and trans acting mechanisms working in concert to drive gene expression, with disruption of these processes linked to multiple diseases. Previous computational attempts to understand the influence of regulatory mechanisms on gene expression have used prediction models containing input features derived from cis regulatory factors. However, local chromatin looping and trans-acting mechanisms are known to also influence transcriptional regulation, and their inclusion may improve model accuracy and interpretation. In this study, we create a general model of transcription factor influence on gene expression by incorporating both cis and trans gene regulatory features. Results We describe a computational framework to model gene expression for GM12878 and K562 cell lines. This framework weights the impact of transcription factor-based regulatory data using multi-omics gene regulatory networks to account for both cis and trans acting mechanisms, and measures of the local chromatin context. These prediction models perform significantly better compared to models containing cis-regulatory features alone. Models that additionally integrate long distance chromatin interactions (or chromatin looping) between distal transcription factor binding regions and gene promoters also show improved accuracy. As a demonstration of their utility, effect estimates from these models were used to weight cis-regulatory rare variants for sequence kernel association test analyses of gene expression. Conclusions Our models generate refined effect estimates for the influence of individual transcription factors on gene expression, allowing characterization of their roles across the genome. This work also provides a framework for integrating multiple data types into a single model of transcriptional regulation.


Sign in / Sign up

Export Citation Format

Share Document